By studying low radiative efficiency blue III-nitride light emitting diodes (LEDs), we find that the ABC model of recombination commonly used for understanding efficiency behavior in LEDs is insufficient and that additional effects should be taken into account. We propose a modification to the standard recombination model by incorporating a bimolecular nonradiative term. The modified model is shown to be in much better agreement with the radiative efficiency data and to be more consistent than the conventional model with very short carrier lifetimes measured by time-resolved photoluminescence in similar, low radiative efficiency material. We present experimental evidence that a hot carrier-generating process is occurring within these devices, in the form of measurements of forward photocurrent under forward bias. The forward photocurrent, due to hot carrier generation in the active region, is present despite the lack of any “efficiency droop”—the usual signature of band-to-band Auger recombination in high-quality III-nitride LEDs. Hot carrier generation in the absence of band-to-band Auger recombination implies that some other source of hot carriers exists within these low radiative efficiency devices, such as trap-assisted Auger recombination.

1.
P. T.
Landsberg
,
C.
Rhys-Roberts
, and
P.
Lal
,
Proc. Phys. Soc.
84
,
915
(
1964
).
2.
A. C.
Espenlaub
,
A. I.
Alhassan
,
S.
Nakamura
,
C.
Weisbuch
, and
J. S.
Speck
,
Appl. Phys. Lett.
112
,
141106
(
2018
).
3.
J.
Iveland
,
L.
Martinelli
,
J.
Peretti
,
J. S.
Speck
, and
C.
Weisbuch
,
Phys. Rev. Lett.
110
,
177406
(
2013
).
4.
D. J.
Myers
,
K.
Gelžinytė
,
W. Y.
Ho
,
J.
Iveland
,
L.
Martinelli
,
J.
Peretti
,
C.
Weisbuch
, and
J. S.
Speck
,
J. Appl. Phys.
124
,
055703
(
2018
).
5.
D. J.
Myers
,
A. C.
Espenlaub
,
E. C.
Young
,
K.
Gelžinytė
,
L.
Martinelli
,
J.
Peretti
,
C.
Weisbuch
, and
J. S.
Speck
, “Evidence for trap-assisted Auger recombination in MBE grown InGaN quantum wells by electron emission spectroscopy” (unpublished).
6.
A.
David
,
M. J.
Grundmann
,
J. F.
Kaeding
,
N. F.
Gardner
,
T. G.
Mihopoulos
, and
M. R.
Krames
,
Appl. Phys. Lett.
92
,
053502
(
2008
).
7.
C.-K.
Li
,
M.
Piccardo
,
L.-S.
Lu
,
S.
Mayboroda
,
L.
Martinelli
,
J.
Peretti
,
J. S.
Speck
,
C.
Weisbuch
,
M.
Filoche
, and
Y.-R.
Wu
,
Phys. Rev. B
95
,
144206
(
2017
).
8.
Q.
Dai
,
Q.
Shan
,
J.
Wang
,
S.
Chhajed
,
J.
Cho
,
E. F.
Schubert
,
M. H.
Crawford
,
D. D.
Koleske
,
M.-H.
Kim
, and
Y.
Park
,
Appl. Phys. Lett.
97
,
133507
(
2010
).
9.
K. A.
Bulashevich
,
O. V.
Khokhlev
,
I.
Yu Evstratov
, and
S.
Yu Karpov
,
Proc. SPIE
8278
,
827819
(
2012
).
10.
A.
David
and
M. J.
Grundmann
,
Appl. Phys. Lett.
97
,
033501
(
2010
).
11.
T.
Sano
,
T.
Doi
,
S. A.
Inada
,
T.
Sugiyama
,
Y.
Honda
,
H.
Amano
, and
T.
Yoshino
,
Jpn. J. Appl. Phys.
52
,
08JK09
(
2013
).
12.
M.
Auf der Maur
,
B.
Galler
,
I.
Pietzonka
,
M.
Strassburg
,
H.
Lugauer
, and
A.
Di Carlo
,
Appl. Phys. Lett.
105
,
131101
(
2014
).
13.
K.
Tadatomo
, “
Epitaxy part B. Epitaxial growth of GaN on patterned sapphire substrates
,” in
III-Nitride Based Light Emitting Diodes and Applications
, 1st ed., edited by
T.-Y.
Seong
,
J.
Han
,
H.
Amano
, and
H.
Morkoç
(
Springer
,
Dordrecht
,
2013
), Ch. 4, p.
70.La
.
14.
M. R.
Krames
,
O. B.
Shchekin
,
R.
Mueller-Mach
,
G. O.
Mueller
,
L.
Zhou
,
G.
Harbers
, and
M. G.
Craford
,
J. Disp. Technol.
3
,
160
(
2007
).
15.
It is important to note that the junction field in an LED structure could lead to escape (either by tunneling or by thermionic emission) of some of the photo-excited carriers out of the QW (either direct or via defect states), which would complicate extraction of LED recombination lifetimes from the PL transient in the specially designed unipolar structure (Fig. 6). However, because the unipolar structure lacks a junction field and so has a lower electric field surrounding the QW than an LED structure, the tunneling component of its lifetime is surely smaller than the observed decay time of the TRPL signal, and it is reasonable to conclude that the measured carrier lifetime in the unipolar structure is, therefore, an upper bound on the recombination lifetime in LED structures.
16.
R.
Ivanov
,
S.
Marcinkevičius
,
Y.
Zhao
,
D. L.
Becerra
,
S.
Nakamura
,
S. P.
DenBaars
, and
J. S.
Speck
,
Appl. Phys. Lett.
107
,
211109
(
2015
).
17.
E. C.
Young
,
N.
Grandjean
,
T. E.
Mates
, and
J. S.
Speck
,
Appl. Phys. Lett.
109
,
212103
(
2016
).
18.
P. T.
Landsberg
and
D. J.
Robbins
,
Solid State Electron.
21
,
1289
(
1978
).
19.
P. T.
Landsberg
,
D. A.
Evans
, and
C.
Rhys-Roberts
,
Proc. Phys. Soc.
83
,
325
(
1964
).
20.
P. T.
Landsberg
and
M. J.
Adams
,
Proc. R. Soc. Lond. A
334
,
523
(
1973
).
21.
D. J.
Robbins
and
P. T.
Landsberg
,
J. Phys. C Solid State Phys.
13
,
2425
(
1980
).
22.
A.
Haug
,
Phys. Status Solidi B
97
,
481
(
1980
).
23.
A.
Haug
,
Phys. Status Solidi B
108
,
443
(
1981
).
24.
D. J.
Robbins
,
J. Phys. C Solid State Phys.
16
,
3825
(
1983
).
25.
V. B.
Khalfin
,
M. V.
Strikha
, and
I. N.
Yassievich
,
Phys. Status Solidi B
132
,
203
(
1985
).
26.
A.
Hangleiter
,
Phys. Rev. B
37
,
2594
(
1988
).
27.
A.
Haug
,
Appl. Phys. A
56
,
567
569
(
1993
).
28.
A.
Hangleiter
,
Phys. Rev. Lett.
55
,
2976
(
1985
).
29.
A. W.
Cohn
,
N.
Janßen
,
J. M.
Mayer
, and
D. R.
Gamelin
,
J. Phys. Chem. C
116
,
20633
(
2012
).
30.
A. W.
Cohn
,
A. M.
Schimpf
,
C. E.
Gunthardt
, and
D. R.
Gamelin
,
Nano Lett.
13
,
1810
(
2013
).
31.
S. N.
Mohammad
,
Philos. Mag. B
81
,
591
(
2001
).
32.
C. K.
Li
,
M.
Piccardo
,
L.–S.
Lu
,
S.
Mayboroda
,
L.
Martinelli
,
J.
Peretti
,
J. S.
Speck
,
C.
Weisbuch
,
M.
Filoche
, and
Y.-R.
Wu
,
Phys. Rev. B
95
,
144206
(
2017
).
33.
P.
Kivisaari
,
T.
Sadi
,
J.
Li
,
P.
Rinke
, and
J.
Oksanen
,
Adv. Electron. Mater.
3
,
1600494
(
2017
).
34.
J.
Geng
,
P.
Sarangapani
,
K.-C.
Wang
,
E.
Nelson
,
B.
Browne
,
C.
Wordelman
,
J.
Charles
,
Y.
Chu
,
T.
Kubis
, and
G.
Klimeck
,
Phys. Status Solidi A
215
,
1700662
(
2018
).
You do not currently have access to this content.