We investigate thermal rectification in nanoporous silicon using a semiclassical Monte Carlo simulation method. We consider geometrically asymmetric nanoporous structures and investigate the combined effects of porosity, interpore distance, and pore position relative to the device boundaries. Two basis geometries are considered, one in which the pores are arranged in rectangular arrays and ones in which they form triangular arrangements. We show that systems (i) with denser, compressed pore arrangements (i.e., with smaller interpore distances), (ii) with the pores positioned closer to the device edge/contact, and (iii) with the pores in a triangular arrangement can achieve rectification of over 55%. Introducing smaller pores into existing porous geometries in a hierarchical fashion increases rectification even further to over 60%. Importantly, for the structures we simulate, we show that sharp rectifying junctions, separating regions of long from short phonon mean-free-paths, are more beneficial for rectification than spreading the asymmetry throughout the material along the heat direction in a graded fashion.

1.
M.
Verdier
,
Y.
Han
,
D.
Lacroix
,
P.-O.
Chapuis
, and
K.
Termentzidis
,
J. Phys. Mater.
2
,
015002
(
2019
).
2.
M.
Verdier
,
D.
Lacroix
, and
K.
Termentzidis
,
Phys. Rev. B
94
,
1
(
2018
).
3.
C. J.
Foss
and
Z.
Aksamija
,
2D Mater.
6
,
025019
(
2019
).
4.
J.
Cao
,
J. D.
Querales-Flores
,
A. R.
Murphy
,
S.
Fahy
, and
I.
Savić
,
Phys. Rev. B
98
,
1
(
2018
).
5.
I.
Zardo
and
R.
Rurali
,
Green Sustain. Chem.
17
,
1
7
(
2019
).
6.
B.
Lorenzi
,
R.
Dettori
,
M. T.
Dunham
,
C.
Melis
,
R.
Tonini
,
L.
Colombo
,
A.
Sood
,
K. E.
Goodson
, and
D.
Narducci
,
J. Electron. Mater.
47
,
5148
(
2018
).
7.
M.
Ohnishi
and
J.
Shiomi
,
APL Mater.
7
,
013102
(
2019
).
8.
A.
Malhotra
,
K.
Kothari
, and
M.
Maldovan
,
J. Appl. Phys.
125
,
044304
(
2019
).
9.
C.
Starr
,
J. Appl. Phys.
7
,
15
(
1936
).
10.
S.
Gluchko
,
R.
Anufriev
,
R.
Yanagisawa
,
S.
Volz
, and
M.
Nomura
,
Appl. Phys. Lett.
114
,
023102
(
2019
).
11.
J. J.
Martinez-Flores
,
D.
Varshney
, and
J.
Alvarez-Quintana
,
Appl. Phys. Lett.
113
,
264102
(
2018
).
12.
X.
Yang
,
D.
Yu
,
B.
Cao
, and
A. C.
To
,
ACS Appl. Mater. Interfaces
9
,
24078
(
2017
).
13.
D.
Sawaki
,
W.
Kobayashi
,
Y.
Moritomo
, and
I.
Terasaki
,
Appl. Phys. Lett.
98
,
081915
(
2011
).
14.
Y.
Wang
,
S.
Chen
, and
X.
Ruan
,
Appl. Phys. Lett.
100
,
163101
(
2012
).
15.
Y.-Y.
Liu
,
W.-X.
Zhou
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
105
,
203111
(
2014
).
16.
M.
Criado-Sancho
,
F. X.
Alvarez
, and
D.
Jou
,
J. Appl. Phys.
114
,
053512
(
2013
).
17.
C. L.
Chiu
,
C. H.
Wu
,
B. W.
Huang
,
C. Y.
Chien
, and
C. W.
Chang
,
AIP Adv.
6
,
121901
(
2016
).
18.
M.
Terraneo
,
M.
Peyrard
, and
G.
Casati
,
Phys. Rev. Lett.
88
(
9
),
4302
(
2002
).
19.
R.
Dettori
,
C.
Melis
,
R.
Rurali
, and
L.
Colombo
,
J. Appl. Phys.
119
,
215102
(
2016
).
20.
Z.
Yu
,
L.
Ferrer-Argemi
, and
J.
Lee
,
J. Appl. Phys.
122
,
244305
(
2017
).
21.
H.
Machrafi
,
G.
Lebon
, and
D.
Jou
,
Int. J. Heat Mass Transf.
97
,
603
(
2016
).
22.
N.
Yang
,
G.
Zhang
, and
B.
Li
,
Appl. Phys. Lett.
95
,
033107
(
2009
).
23.
A.
Yousefzadi Nobakht
,
Y. A.
Gandomi
,
J.
Wang
,
M. H.
Bowman
,
D. C.
Marable
,
B. E.
Garrison
,
D.
Kim
, and
S.
Shin
,
Carbon
(
Elsevier
,
New York
,
2018
).
24.
D.
Chakraborty
,
S.
Foster
, and
N.
Neophytou
,
Phys. Rev. B
98
,
115435
(
2018
).
25.
D.
Chakraborty
and
L. d. S.
Oliveira
,
J. Electron. Mater.
48
,
1909
(
2019
).
26.
D.
Chakraborty
,
S.
Foster
, and
N.
Neophytou
,
Mater. Today Proc.
8
,
652
(
2019
).
27.
N. A.
Roberts
and
D. G.
Walker
,
Int. J. Therm. Sci.
50
,
648
(
2011
).
28.
M.-S.
Jeng
,
R.
Yang
,
D.
Song
, and
G.
Chen
,
J. Heat Transf.
130
,
042410
(
2008
).
29.
Y. C.
Hua
and
B. Y.
Cao
,
J. Comput. Phys.
342
,
253
266
(
2017
).
30.
M.
Schmotz
,
J.
Maier
,
E.
Scheer
, and
P.
Leiderer
,
New J. Phys.
13
,
113027
(
2011
).
31.
H.
Tian
,
D.
Xie
,
Y.
Yang
,
T.-L.
Ren
,
G.
Zhang
,
Y.-F.
Wang
,
C.-J.
Zhou
,
P.-G.
Peng
,
L.-G.
Wang
, and
L.-T.
Liu
,
Sci. Rep.
2
,
523
(
2012
).
32.
C.
Jeong
,
R.
Kim
, and
M.
Lundstrom
,
J. Appl. Phys.
111
,
113707
(
2012
).
33.
M.
Maldovan
,
J. Appl. Phys.
110
,
114310
(
2011
).
34.
G.
Romano
and
J. C.
Grossman
,
Phys. Rev. B.
96
,
115425
(
2017
).
35.
K. D.
Parrish
,
J. R.
Abel
,
A.
Jain
,
J. A.
Malen
, and
A. J. H.
McGaughey
,
J. Appl. Phys.
122
,
125101
(
2017
).
36.
W.
Park
,
G.
Romano
,
E. C.
Ahn
,
T.
Kodama
,
J.
Park
,
M. T.
Barako
,
J.
Sohn
,
S. J.
Kim
,
J.
Cho
,
A. M.
Marconnet
,
M.
Asheghi
,
A. M.
Kolpak
, and
K. E.
Goodson
,
Sci. Rep.
7
,
1
(
2017
).
37.
S.
Basu
and
M.
Francoeur
,
Appl. Phys. Lett.
98
,
1
(
2011
).
38.
W.-R.
Zhong
,
W.-H.
Huang
,
X.-R.
Deng
, and
B.-Q.
Ai
,
Appl. Phys. Lett.
99
,
193104
(
2011
).
39.
X.-K.
Chen
,
J.
Liu
,
Z.-X.
Xie
,
Y.
Zhang
,
Y.-X.
Deng
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
113
,
121906
(
2018
).
40.
W.
Kobayashi
,
Y.
Teraoka
, and
I.
Terasaki
,
Appl. Phys. Lett.
95
,
171905
(
2011
).
41.
S.
Wolf
,
N.
Neophytou
, and
H.
Kosina
,
J. Appl. Phys.
115
(
20
),
204306
(
2014
).
42.
E.
Pop
,
R. W.
Dutton
, and
K. E.
Goodson
,
J. Appl. Phys.
96
(
9
),
4998
5005
(
2004
).
43.
S.
Wolf
,
N.
Neophytou
,
Z.
Stanojevic
, and
H.
Kosina
,
J. Electron. Mater.
43
(
10
),
3870
3875
(
2014
).
44.
S.
Mazumdar
and
A.
Majumdar
, “
Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
,”
ASME J. Heat Transf.
123
,
749
759
(
2001
).
45.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
,
Phys. Rev. B
72
(
6
),
064305
(
2005
).
46.
Q.
Hao
,
G.
Chen
, and
M. S.
Jeng
,
J. Appl. Phys.
106
,
114321
(
2009
).
47.
A.
Mittal
and
S.
Mazumder
,
J. Heat Transf.
132
,
052402
(
2010
).
48.
E.
Pop
,
S.
Sinha
, and
K. E.
Goodson
,
Proc. IEEE
94
(
8
),
1587
1601
(
2006
).
49.
J.-P. M.
Peraud
,
C. D.
Landon
, and
N. G.
Hadjiconstantinou
,
Annu. Rev. Heat Transf.
17
,
205
(
2014
).
50.
L. d. S.
Oliveira
and
N.
Neophytou
,
Phys. Rev. B
100
,
035409
(
2019
).
You do not currently have access to this content.