We have studied transport properties of composite oxides composed of ferrimagnetic conductor Fe3O4 (magnetite) and insulating α-Fe2O3 (hematite) at room temperature. High-density composite oxides with different Fe3O4/Fe2O3 ratios were successfully synthesized by melting Fe2O3 rods at high temperatures in ambient atmosphere. Transport properties of Fe3O4-Fe2O3 composites were measured and compared with that of Fe3O4 single crystals. As the ratio of the insulating Fe2O3 concentration to the conductive Fe3O4 one increases, the longitudinal resistivity increases exponentially, while the Seebeck coefficient decreases linearly. The contrasting dependences of electric and thermoelectric transports on the insulating Fe2O3 concentration indicate that the thermoelectric transport is less susceptible to disorder effects than electric ones. The measurement of the Hall effect shows that the anomalous Hall effect due to the ferrimagnetic Fe3O4 phase is clearly observed in the composite oxides. In line with the resistivity increase with the Fe2O3 concentration, the anomalous Hall resistivity increases, following the universal scaling relation established in the dirty limit. The anomalous Nernst effect due to the Fe3O4 phase is also observed in the composite oxides. The anomalous Nernst coefficient decreases with increasing Fe2O3 concentration, and the decrease is found to be related to the anomalous Hall effect through the Mott relation.

1.
Green Energy Advances
, edited by D. Enescu (
IntechOpen
,
2019
).
2.
S. N.
Guin
,
K.
Manna
,
J.
Noky
,
S. J.
Watzman
,
C.
Fu
,
N.
Kumar
,
W.
Schnelle
,
C.
Shekhar
,
Y.
Sun
,
J.
Gooth
, and
C.
Felser
,
NPG Asia Mater.
11
,
16
(
2019
).
3.
K.
Behnia
and
H.
Aubin
,
Rep. Prog. Phys.
79
,
046502
(
2016
).
4.
K.
Behnia
,
J. Phys. Condens. Matter
21
,
113101
(
2009
).
5.
G. E. W.
Bauer
,
E.
Saitoh
, and
B. J.
van Wees
,
Nature Mater.
11
,
391
399
(
2012
).
6.
C. T.
Bui
and
F.
Rivadulla
,
Phys. Rev. B
90
,
100403(R)
(
2014
).
7.
Y.
Sakuraba
,
K.
Hasegawa
,
M.
Mizuguchi
,
T.
Kubota
,
S.
Mizukami
,
T.
Miyazaki
, and
K.
Takanashi
,
Appl. Phys. Express
6
,
033003
(
2013
).
8.
H.
Sharma
,
Z.
Wen
,
K.
Takanashi
, and
M.
Mizuguchi
,
Jpn. J. Appl. Phys.
58
,
SBBI03
(
2019
).
9.
K.
Uchida
,
T.
Kikkawa
,
T.
Seki
,
T.
Oyake
,
J.
Shiomi
,
Z.
Qiu
,
K.
Takanashi
, and
E.
Saitoh
,
Phys. Rev. B
92
,
094414
(
2015
).
10.
A.
Sakai
,
Y. P.
Mizuta
,
A. A.
Nugroho
,
R.
Sihombing
,
T.
Koretsune
,
M.-T.
Suzuki
,
N.
Takemori
,
R.
Ishii
,
D.
Nishio-Hamane
,
R.
Arita
,
P.
Goswami
, and
S.
Nakatsuji
,
Nature Phys.
14
,
1119
(
2018
).
11.
T. C.
Chuang
,
P. L.
Su
,
P. H.
Wu
, and
S. Y.
Huang
,
Phys. Rev. B
96
,
174406
(
2017
).
12.
X.
Li
,
L.
Xu
,
L.
Ding
,
J.
Wang
,
M.
Shen
,
X.
Lu
,
Z.
Zhu
, and
K.
Behnia
,
Phys. Rev. Lett.
119
,
056601
(
2017
).
13.
M.
Ikhlas
,
T.
Tomita
,
T.
Koretsune
,
M.
Suzuki
,
D.
Nishio-Hamane
,
R.
Arita
,
Y.
Otani
, and
S.
Nakatsuji
,
Nat. Phys.
13
,
1085
(
2017
).
14.
C.
Wuttke
,
F.
Caglieris
,
S.
Sykora
,
F.
Scaravaggi
,
A. U. B.
Wolter
,
K.
Manna
,
V.
Süss
,
C.
Shekhar
,
C.
Felser
,
B.
Buchner
, and
C.
Hess
,
Phys. Rev. B
100
,
085111
(
2019
).
15.
R.
Ramos
,
M. H.
Aguirre
,
A.
Anadon
,
J.
Blasco
,
I.
Lucas
,
K.
Uchida
,
P. A.
Algarabel
,
L.
Morellon
,
E.
Saitoh
, and
M. R.
Ibarra
,
Phys. Rev. B
90
,
054422
(
2014
).
16.
R.
Ramos
,
T.
Kikkawa
,
A.
Anadon
,
I.
Lucas
,
T.
Niizeki
,
K.
Uchida
,
P. A.
Algarabel
,
L.
Morellon
,
M. H.
Aguirre
,
M. R.
Ibarra
, and
E.
Saitoh
,
Appl. Phys. Lett.
114
,
113902
(
2019
).
17.
J.
Sinova
and
I.
Žutić
,
Nat. Mater.
11
,
368
(
2012
).
18.
K.
Uchida
,
H.
Adachi
,
T.
Ota
,
H.
Nakayama
,
S.
Maekawa
, and
E.
Saitoh
,
Appl. Phys. Lett.
97
,
172505
(
2010
).
19.
Y.
Shiomi
,
Y.
Handa
,
T.
Kikkawa
, and
E.
Saitoh
,
Appl. Phys. Lett.
106
,
232403
(
2015
).
20.
Y.
Shiomi
,
J.
Lustikova
, and
E.
Saitoh
,
Sci. Rep.
7
,
5358
(
2017
).
21.
Y.
Shiomi
,
R.
Takashima
,
D.
Okuyama
,
G.
Gitgeatpong
,
P.
Piyawongwatthana
,
K.
Matan
,
T. J.
Sato
, and
E.
Saitoh
,
Phys. Rev. B
96
,
180414(R)
(
2017
).
22.
Z.
Ka¸kol
,
J.
Sabol
, and
J. M.
Honig
,
Phys. Rev. B
44
,
2198
(
1991
).
23.
Z.
Ka¸kol
,
J.
Sabol
,
J.
Stickler
, and
J. M.
Honig
,
Phys. Rev. B
46
,
1975
(
1991
).
24.
D.
Kim
and
J. M.
Honig
,
Phys. Rev. B
49
,
4438
(
1994
).
25.
S.
Todo
,
K.
Siratori
, and
S.
Kimura
,
J. Phys. Soc. Jpn.
64
,
2118
(
1995
).
26.
Z.
Rubin
,
S. A.
Sunshine
,
M. B.
Heaney
,
I.
Bloom
, and
I.
Balberg
,
Phys. Rev. B
59
,
12196
(
1999
).
27.
B.
Krause
,
P.
Pötschke
, and
L.
Häußler
,
Compos. Sci. Technol.
69
,
1505
(
2009
).
28.
J.
Wu
and
D. S.
McLachlan
,
Phys. Rev. B
56
,
1236
(
1997
).
29.
D. S.
McLachlan
,
M.
Blaszkiewicz
, and
R. E.
Newnham
,
J. Am. Ceram. Soc.
73
,
2187
(
1990
).
30.
D.
Venkateshvaran
,
W.
Kaiser
,
A.
Boger
,
M.
Althammer
,
M. S. R.
Rao
,
S. T. B.
Goennenwein
,
M.
Opel
, and
R.
Gross
,
Phys. Rev. B
78
,
092405
(
2008
).
31.
S.
Onoda
,
N.
Sugimoto
, and
N.
Nagaosa
,
Phys. Rev. Lett.
97
,
126602
(
2006
).
32.
S.
Onoda
,
N.
Sugimoto
, and
N.
Nagaosa
,
Phys. Rev. B
77
,
165103
(
2008
).
33.
T.
Miyasato
,
N.
Abe
,
T.
Fujii
,
A.
Asamitsu
,
S.
Onoda
,
Y.
Onose
,
N.
Nagaosa
, and
Y.
Tokura
,
Phys. Rev. Lett.
99
,
086602
(
2007
).
34.
A.
Fernández-Pacheco
,
J. M.
De Teresa
,
J.
Orna
,
L.
Morellon
,
P. A.
Algarabel
,
J. A.
Pardo
, and
M. R.
Ibarra
,
Phys. Rev. B
77
,
100403
(
2008
).
35.
G.
Jonker
,
Phillips Res. Rep.
23
(
2
),
131
138
(
1968
).
36.
J.
Nell
,
B.
Wood
,
S.
Dorris
, and
T.
Mason
,
J. Solid State Chem.
82
,
247
254
(
1989
).
37.
Q.
Zhu
,
E.
Hopper
,
B.
Ingram
, and
T.
Mason
,
J. Am. Ceram. Soc.
94
(
1
),
187
193
(
2011
).
You do not currently have access to this content.