The electronic band structure of Ga(PAsN) with a few percent of nitrogen is calculated in the whole composition range of Ga(PAs) host using density functional methods including the modified Becke-Johnson functional to correctly reproduce the bandgap and unfolding of the supercell band structure to reveal the character of the bands. Relatively small amounts of nitrogen introduced to Ga(PAs) lead to the formation of an intermediate band below the conduction band, which is consistent with the band anticrossing model, widely used to describe the electronic band structure of dilute nitrides. However, in this study, calculations are performed in the whole Brillouin zone and they reveal the significance of the correct description of the band structure near the edges of the Brillouin zone, especially for the indirect bandgap P-rich host alloy, which may not be properly captured with simpler models. The influence of nitrogen on the band structure is discussed in terms of the application of Ga(PAsN) in optoelectronic devices such as intermediate band solar cells, light emitters, as well as two color emitters. Additionally, the effect of nitrogen incorporation on the carrier localization is studied and discussed. The theoretical results are compared with experimental studies, confirming their reliability.

1.
W.
Shan
,
W.
Walukiewicz
,
J.
Ager III
,
E.
Haller
,
J.
Geisz
,
D.
Friedman
,
J.
Olson
, and
S.
Kurtz
, “
Band anticrossing in GaInNAs alloys
,”
Phys. Rev. Lett.
82
,
1221
1224
(
1999
).
2.
A.
Lindsay
and
E.
O’Reilly
, “
Theory of enhanced bandgap non-parabolicity in GaNxAs1x and related alloys
,”
Solid State Commun.
112
,
443
447
(
1999
).
3.
P.
Kent
and
A.
Zunger
, “
Evolution of III-V nitride alloy electronic structure: The localized to delocalized transition
,”
Phys. Rev. Lett.
86
,
2613
2616
(
2001
).
4.
R.
Kudrawiec
,
M.
Latkowska
,
M.
Baranowski
,
J.
Misiewicz
,
L.
Li
, and
J.
Harmand
, “
Photoreflectance, photoluminescence, and microphotoluminescence study of optical transitions between delocalized and localized states in GaN0.02As0.98, Ga0.95In0.05N0.02As0.98, and GaN0.02As0.90Sb0.08 layers
,”
Phys. Rev. B
88
,
125201
(
2013
).
5.
S.
Bank
,
H.
Bae
,
L.
Goddard
,
H.
Yuen
,
M.
Wistey
,
R.
Kudrawiec
, and
J.
Harris, Jr.
, “
Recent progress on 1.55-m dilute-nitride lasers
,”
IEEE J. Quantum Electron.
43
,
773
785
(
2007
).
6.
M.
Gladysiewicz
,
R.
Kudrawiec
, and
M.
Wartak
, “
Material gain in Ga0.341y, GaNyAs0.69ySb0.31, and GaNyP0.46Sb0.54y quantum wells grown on GaAs substrates: Comparative theoretical studies
,”
IEEE J. Quantum Electron.
50
,
996
1005
(
2014
).
7.
M.
Gladysiewicz
,
R.
Kudrawiec
, and
M.
Wartak
, “
Electronic band structure and material gain of dilute nitride quantum wells grown on InP substrate
,”
IEEE J. Quantum Electron.
51
,
7056415
(
2015
).
8.
A.
Maros
,
N.
Faleev
,
R.
King
, and
C.
Honsberg
, “
Growth and characterization of GaAs1xySbxNy/GaAs heterostructures for multijunction solar cell applications
,”
J. Vac. Sci. Technol. B
34
,
02L106
(
2016
).
9.
V.
Polojärvi
,
A.
Aho
,
A.
Tukiainen
,
A.
Schramm
, and
M.
Guina
, “
Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells
,”
Appl. Phys. Lett.
108
,
122104
(
2016
).
10.
R.
King
,
D.
Bhusari
,
D.
Larrabee
,
X.-Q.
Liu
,
E.
Rehder
,
K.
Edmondson
,
H.
Cotal
,
R.
Jones
,
J.
Ermer
,
C.
Fetzer
,
D.
Law
, and
N.
Karam
, “
Solar cell generations over 40% efficiency
,”
Prog. Photovolt. Res. Appl.
20
,
801
815
(
2012
).
11.
A.
Luque
and
A.
Marti
, “
Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels
,”
Phys. Rev. Lett.
78
,
5014
5017
(
1997
).
12.
A.
Luque
and
A.
Marti
, “
The intermediate band solar cell: Progress toward the realization of an attractive concept
,”
Adv. Mater.
22
,
160
174
(
2010
).
13.
I.
Ramiro
,
A.
Marti
,
E.
Antolin
, and
A.
Luque
, “
Review of experimental results related to the operation of intermediate band solar cells
,”
IEEE J. Photovoltaics
4
,
736
748
(
2014
).
14.
T.
Kada
,
S.
Asahi
,
T.
Kaizu
,
Y.
Harada
,
T.
Kita
,
R.
Tamaki
,
Y.
Okada
, and
K.
Miyano
, “
Two-step photon absorption in InAs/GaAs quantum-dot superlattice solar cells
,”
Phys. Rev. B
91
,
201303
(
2015
).
15.
T.
Sogabe
,
Y.
Shoji
,
M.
Ohba
,
K.
Yoshida
,
R.
Tamaki
,
H.-F.
Hong
,
C.-H.
Wu
,
C.-T.
Kuo
,
S.
Tomić
, and
Y.
Okada
, “
Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules
,”
Sci. Rep.
4
,
4792
(
2014
).
16.
A.
Luque
,
A.
Martí
,
E.
Antolín
, and
C.
Tablero
, “
Intermediate bands versus levels in non-radiative recombination
,”
Physica B
382
,
320
327
(
2006
).
17.
M.
Wełna
,
R.
Kudrawiec
,
Y.
Nabetani
,
T.
Tanaka
,
M.
Jaquez
,
O.
Dubon
,
K.
Yu
, and
W.
Walukiewicz
, “
Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides
,”
Semicond. Sci. Technol.
30
,
085018
(
2015
).
18.
R.
Kudrawiec
,
A.
Luce
,
M.
Gladysiewicz
,
M.
Ting
,
Y.
Kuang
,
C.
Tu
,
O.
Dubon
,
K.
Yu
, and
W.
Walukiewicz
, “
Electronic band structure of GaNxPyAs1xy highly mismatched alloys: Suitability for intermediate-band solar cells
,”
Phys. Rev. Appl.
1
,
034007
(
2014
).
19.
Y.
Kuang
,
K.
Yu
,
R.
Kudrawiec
,
A.
Luce
,
M.
Ting
,
W.
Walukiewicz
, and
C.
Tu
, “
GaNAsP: An intermediate band semiconductor grown by gas-source molecular beam epitaxy
,”
Appl. Phys. Lett.
102
,
112105
(
2013
).
20.
M.
Baranowski
,
R.
Kudrawiec
,
A. V.
Luce
,
M.
Latkowska
,
K. M.
Yu
,
Y. J.
Kuang
,
J.
Misiewicz
,
C. W.
Tu
, and
W.
Walukiewicz
, “
Temperature evolution of carrier dynamics in GaNxPyAs1yx alloys
,”
J. Appl. Phys.
117
,
175702
(
2015
).
21.
H.
Jussila
,
P.
Kivisaari
,
J.
Lemettinen
,
T.
Tanaka
, and
M.
Sopanen
, “
Two-photon absorption in GaAs1xyPyNx intermediate-band solar cells
,”
Phys. Rev. Appl.
3
,
054007
(
2015
).
22.
S.
Ilahi
,
S.
Almosni
,
F.
Chouchane
,
M.
Perrin
,
K.
Zelazna
,
N.
Yacoubi
,
R.
Kudrawiec
,
P.
Râle
,
L.
Lombez
,
J.-F.
Guillemoles
,
O.
Durand
, and
C.
Cornet
, “
Optical absorption and thermal conductivity of GaAsPN absorbers grown on GaP in view of their use in multijunction solar cells
,”
Sol. Energy Mater. Sol. Cells
141
,
291
298
(
2015
).
23.
G.
Biwa
,
H.
Yaguchi
,
K.
Onabe
, and
Y.
Shiraki
, “
Photoluminescence and photoluminescence-excitation spectroscopy of GaPAsN/GaP lattice-matched multiple quantum well structures
,”
J. Cryst. Growth
195
,
574
578
(
1998
).
24.
C.
Robert
,
A.
Bondi
,
T.
Thanh
,
J.
Even
,
C.
Cornet
,
O.
Durand
,
J.
Burin
,
J.
Jancu
,
W.
Guo
,
A.
Ĺtoublon
,
H.
Folliot
,
S.
Boyer-Richard
,
M.
Perrin
,
N.
Chevalier
,
O.
Dehaese
,
K.
Tavernier
,
S.
Loualiche
, and
A.
Le Corre
, “
Room temperature operation of GaAsP(N)/GaP(N) quantum well based light-emitting diodes: Effect of the incorporation of nitrogen
,”
Appl. Phys. Lett.
98
,
251110
(
2011
).
25.
A.
Babichev
,
A.
Lazarenko
,
E.
Nikitina
,
E.
Pirogov
,
M.
Sobolev
, and
A.
Egorov
, “
Ultra-wide electroluminescence spectrum of LED heterostructures based on GaPAsN semiconductor alloys
,”
Semiconductors
48
,
501
504
(
2014
).
26.
K.
Zelazna
,
M.
Gladysiewicz
,
M. P.
Polak
,
S.
Almosni
,
A.
Létoublon
,
C.
Cornet
,
O.
Durand
,
W.
Walukiewicz
, and
R.
Kudrawiec
, “
Nitrogen-related intermediate band in P-rich GaNxPyAs1xy alloys
,”
Sci. Rep.
7
,
15703
(
2017
).
27.
B.
Kunert
,
K.
Volz
,
J.
Koch
, and
W.
Stolz
, “
Direct-band-gap Ga(NAsP)-material system pseudomorphically grown on GaP substrate
,”
Appl. Phys. Lett.
88
,
182108
(
2006
).
28.
B.
Kunert
,
K.
Volz
,
I.
Nemeth
, and
W.
Stolz
, “
Luminescence investigations of the GaP-based dilute nitride Ga(NAsP) material system
,”
J. Lumin.
121
,
361
364
(
2006
).
29.
S.
Liebich
,
M.
Zimprich
,
A.
Beyer
,
C.
Lange
,
D.
Franzbach
,
S.
Chatterjee
,
N.
Hossain
,
S.
Sweeney
,
K.
Volz
,
B.
Kunert
, and
W.
Stolz
, “
Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate
,”
Appl. Phys. Lett.
99
,
071109
(
2011
).
30.
K.
Joshi
,
N.
Patel
,
C.
Swarnkar
, and
U.
Paliwal
, “
Electronic structure of InxGa1xAsySb1y alloys
,”
Comput. Mater. Sci.
49
,
S246
S250
(
2010
).
31.
J.
Wu
,
W.
Shan
, and
W.
Walukiewicz
, “
Band anticrossing in highly mismatched III-V semiconductor alloys
,”
Semicond. Sci. Technol.
17
,
860
(
2002
).
32.
A.
Luque
,
A.
Martí
, and
C.
Stanley
, “
Understanding intermediate-band solar cells
,”
Nat. Photonics
6
,
146
152
(
2012
).
33.
C.
Bückers
,
E.
Kühn
,
C.
Schlichenmaier
,
S.
Imhof
,
A.
Thränhardt
,
J.
Hader
,
J. V.
Moloney
,
O.
Rubel
,
W.
Zhang
,
T.
Ackemann
, and
S. W.
Koch
, “
Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems
,”
Phys. Status Solidi (b)
247
,
789
808
(
2010
).
34.
J. N.
Heyman
,
A. M.
Schwartzberg
,
K. M.
Yu
,
A. V.
Luce
,
O. D.
Dubon
,
Y. J.
Kuang
,
C. W.
Tu
, and
W.
Walukiewicz
, “
Carrier lifetimes in a III-V-N intermediate-band semiconductor
,”
Phys. Rev. Appl.
7
,
014016
(
2017
).
35.
L.
Bellaiche
,
S.-H.
Wei
, and
A.
Zunger
, “
Composition dependence of interband transition intensities in GaPN, GaAsN, and GaPAs alloys
,”
Phys. Rev. B
56
,
10233
10240
(
1997
).
36.
P.
Kent
and
A.
Zunger
, “
Theory of electronic structure evolution in GaAsN and GaPN alloys
,”
Phys. Rev. B
64
,
1152081
11520823
(
2001
).
37.
E. P.
O’Reilly
,
A.
Lindsay
, and
S.
Fahy
, “
Theory of the electronic structure of dilute nitride alloys: Beyond the band-anti-crossing model
,”
J. Phys. Condens. Matter
16
,
S3257
(
2004
).
38.
J.
Neugebauer
and
C. G.
Van de Walle
, “
Electronic structure and phase stability of GaAs1xNx alloys
,”
Phys. Rev. B
51
,
10568
10571
(
1995
).
39.
K.
Sakamoto
and
H.
Yaguchi
, “
First-principles study on the conduction band electron states of GaAsN alloys
,”
Phys. Status Solidi (c)
11
,
911
913
(
2014
).
40.
M.
Welna
,
M.
Baranowski
,
W.
Linhart
,
R.
Kudrawiec
,
K.
Yu
,
M.
Mayer
, and
W.
Walukiewicz
, “
Multicolor emission from intermediate band semiconductor ZnO1xSex
,”
Sci. Rep.
7
,
44214
(
2017
).
41.
V.
Popescu
and
A.
Zunger
, “
Effective band structure of random alloys
,”
Phys. Rev. Lett.
104
,
236403
(
2010
).
42.
V.
Popescu
and
A.
Zunger
, “
Extracting E versus k—Effective band structure from supercell calculations on alloys and impurities
,”
Phys. Rev. B
85
,
085201
(
2012
).
43.
C.
Pashartis
and
O.
Rubel
, “
Localization of electronic states in III-V semiconductor alloys: A comparative study
,”
Phys. Rev. Appl.
7
,
064011
(
2017
).
44.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
45.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
46.
P.
Blaha
,
K.
Schwarz
,
G. K. H.
Madsen
,
D.
Kvasnicka
,
J.
Luitz
,
R.
Laskowski
,
F.
Tran
, and
L. D.
Marks
,
WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(
Techn. Universität Wien
,
2018
).
47.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M. L.
Klein
, and
J. P.
Perdew
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
(
2016
).
48.
F.
Tran
and
P.
Blaha
, “
Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
,”
Phys. Rev. Lett.
102
,
226401
(
2009
).
49.
J.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
50.
K. B.
Joshi
,
U.
Paliwal
, and
B. K.
Sharma
, “
Hybrid functionals and electronic structure of high-pressure phase of CdO
,”
Phys. Status Solidi (b)
248
,
1248
1252
(
2011
).
51.
D.
Koller
,
F.
Tran
, and
P.
Blaha
, “
Merits and limits of the modified Becke-Johnson exchange potential
,”
Phys. Rev. B
83
,
195134
(
2011
).
52.
Y.-S.
Kim
,
M.
Marsman
,
G.
Kresse
,
F.
Tran
, and
P.
Blaha
, “
Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors
,”
Phys. Rev. B
82
,
205212
(
2010
).
53.
J.
Camargo-Martínez
and
R.
Baquero
, “
Performance of the modified Becke-Johnson potential for semiconductors
,”
Phys. Rev. B
86
,
195106
(
2012
).
54.
A.
Zunger
,
S.-H.
Wei
,
L.
Ferreira
, and
J.
Bernard
, “
Special quasirandom structures
,”
Phys. Rev. Lett.
65
,
353
356
(
1990
).
55.
A.
Van De Walle
,
P.
Tiwary
,
M.
De Jong
,
D.
Olmsted
,
M.
Asta
,
A.
Dick
,
D.
Shin
,
Y.
Wang
,
L.-Q.
Chen
, and
Z.-K.
Liu
, “
Efficient stochastic generation of special quasirandom structures
,”
Calphad
42
,
13
18
(
2013
).
56.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
57.
M.
Landmann
,
E.
Rauls
,
W. G.
Schmidt
,
M.
Röppischer
,
C.
Cobet
,
N.
Esser
,
T.
Schupp
,
D. J.
As
,
M.
Feneberg
, and
R.
Goldhahn
, “
Transition energies and direct-indirect band gap crossing in zinc-blende AlxGa1xN
,”
Phys. Rev. B
87
,
195210
(
2013
).
58.
M. P.
Polak
,
P.
Scharoch
, and
R.
Kudrawiec
, “
The electronic band structure of Ge1xSnx in the full composition range: Indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-Moss effect
,”
J. Phys. D Appl. Phys.
50
,
195103
(
2017
).
59.
P.
Blöchl
,
O.
Jepsen
, and
O.
Andersen
, “
Improved tetrahedron method for Brillouin-zone integrations
,”
Phys. Rev. B
49
,
16223
16233
(
1994
).
60.
O.
Rubel
,
A.
Bokhanchuk
,
S.
Ahmed
, and
E.
Assmann
, “
Unfolding the band structure of disordered solids: From bound states to high-mobility Kane fermions
,”
Phys. Rev. B
90
,
115202
(
2014
).
61.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
, “
Band parameters for III-V compound semiconductors and their alloys
,”
J. Appl. Phys.
80
,
5815
(
2001
).
62.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond
(
Freeman
,
San Francisco
,
1980
).
63.
K. A.
Mäder
and
A.
Zunger
, “
Short- and long-range-order effects on the electronic properties of III-V semiconductor alloys
,”
Phys. Rev. B
51
,
10462
10476
(
1995
).
64.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
J. W.
Ager
,
E. E.
Haller
,
Y. G.
Hong
,
H. P.
Xin
, and
C. W.
Tu
, “
Band anticrossing in GaP1xNx alloys
,”
Phys. Rev. B
65
,
2413031
2413034
(
2002
).
65.
P. R. C.
Kent
and
A.
Zunger
, “
Nitrogen pairs, triplets, and clusters in GaAs and GaP
,”
Appl. Phys. Lett.
79
,
2339
(
2001
).
66.
W.
Shan
,
W.
Walukiewicz
,
K. M.
Yu
,
J.
Wu
,
J. W.
Ager
,
E. E.
Haller
,
H. P.
Xin
, and
C. W.
Tu
, “
Nature of the fundamental band gap in GaNxP1x alloys
,”
Appl. Phys. Lett.
76
,
3251
3253
(
2000
).
67.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
, “
Band anticrossing in GaInNAs alloys
,”
Appl. Phys. Lett.
82
,
1221
1224
(
1999
).
68.
I.
Buyanova
,
W.
Chen
, and
C.
Tu
, “
Recombination processes in N-containing III-V ternary alloys
,”
Solid-State Electron.
47
,
467
475
(
2003
).
69.
R.
Kudrawiec
,
G.
Sek
,
J.
Misiewicz
,
L. H.
Li
, and
J. C.
Harmand
, “
Influence of carrier localization on modulation mechanism in photoreflectance of GaAsN and GaInAsN
,”
Appl. Phys. Lett.
83
,
1379
1381
(
2003
).
70.
R.
Kudrawiec
,
M.
Latkowska
,
M.
Baranowski
,
J.
Misiewicz
,
L. H.
Li
, and
J. C.
Harmand
, “
Photoreflectance, photoluminescence, and microphotoluminescence study of optical transitions between delocalized and localized states in GaN0.02As0.98, Ga0.95In0.05N0.02As0.98, and GaN0.02As0.90Sb0.08 layers
,”
Phys. Rev. B
88
,
125201
(
2013
).
71.
R.
Woscholski
,
S.
Gies
,
M.
Wiemer
,
M. K.
Shakfa
,
A.
Rahimi-Iman
,
P.
Ludewig
,
S.
Reinhard
,
K.
Jandieri
,
S. D.
Baranovskii
,
W.
Heimbrodt
,
K.
Volz
,
W.
Stolz
, and
M.
Koch
, “
Influence of growth temperature and disorder on spectral and temporal properties of Ga(NAsP) heterostructures
,”
J. Appl. Phys.
119
,
145707
(
2016
).
72.
S.
Lai
and
M. V.
Klein
, “
Evidence for exciton localization by alloy fluctuations in indirect-gap GaAsxP1x
,”
Appl. Phys. Lett.
44
,
1087
1090
(
1980
).
73.
M.
Oueslatii
,
C. B. B. L.
Guillaume
, and
M.
Zouaghitb
, “
Calculated emission intensity band M0 from localised states due to disorder in GaAs1xPx alloys
,”
J. Phys. Condens. Matter
1
,
7705
7714
(
1989
).
74.
A.
Fried
,
A.
Ron
, and
E.
Cohen
, “
Intrinsic exciton states in indirect-band-gap GaAsxP1x: Composition dependence and effects of impurities
,”
Phys. Rev. B
39
,
5913
5918
(
1989
).
You do not currently have access to this content.