The charge and energy transport in highly conducting quasi-one-dimensional organic crystals of p-type tetrathiotetracene-iodide, TTT2I3, and of n-type tetrathiotetracene-tetracyanoquinodimethane, TTT(TCNQ)2, is studied. Two electron-phonon interactions are considered simultaneously. One interaction is of the acoustic deformation potential type and the other one is of polaronic character. Charge transport along the conducting molecular chains is bandlike, whereas in the transversal directions, it is of the hopping type. It is shown that due to a partial compensation of these interactions for a narrow interval of states in the one-dimensional conduction band, the relaxation time is of Lorentzian shape and shows a distinct dependence on carrier energy with a pronounced maximum. The scattering of charge carriers on adjacent molecular chains and by impurities and structural defects limits the height of this maximum. However, rather high relaxation times might be anticipated in the case of perfect single crystals. As the carriers in these states show an enhanced mobility, this will lead to a simultaneous increase of electrical conductivity and Seebeck coefficient. It is proposed that, if the above-mentioned crystals could be accomplished by means of sufficient purification and by optimization of the carrier concentration, so that the Fermi level is close to energetic states for which the relaxation time has a maximum, one might achieve values for the thermoelectric figure of merit ZT5 in crystals of tetrathiotetracene-iodide and ZT1.5 in those of tetrathiotetracene-tetracyanoquinodimethane.

1.
M.
Rowe
,
Thermoelectric Handbook: Macro to Nano
(
CRC Press
,
Boca Raton, FL
,
2006
).
2.
G.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
2014
).
3.
G.
Tan
,
F.
Shi
, and
S.
Hao
, “
Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe
,”
Nat. Commun.
7
,
12167
(
2016
).
4.
M.
Babu
,
K.
Hyo Seob
,
L.
Chul-Hee
et al., “
High thermoelectric figure of merit in p-type alloys made from element-mechanical alloying and spark plasma sintering
,”
J. Electron. Mater.
48
,
416
424
(
2019
).
5.
L.
Zhao
,
S.
Lo
,
Y.
Zhang
et al., “
Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
,”
Nature
508
,
373
377
(
2014
).
6.
K.
Imasato
,
S.
Ohno
,
S.
Kang
, and
G.
Snyder
, “
Improving the thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 by reducing excess Mg
,”
APL Mater.
6
,
016106
(
2018
).
7.
P.
Junsoo
,
X.
Yi
, and
O.
Vidvuds
, “
High Thermoelectric power factor and efficiency from a highly dispersive band in Ba2BiAu
,”
Phys. Rev. Appl.
11
,
014058
014068
(
2019
).
8.
J.
Zhang
,
D.
Wu
,
D.
He
et al., “
Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering
,”
Adv. Mater.
29
,
1703148
(
2017
).
9.
J.
Mao
,
J.
Shuai
,
S.
Song
,
Y.
Wu
et al., “
Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
10548
10553
(
2017
).
10.
L.
Bulat
,
V.
Osvenskii
,
A.
Ivanov
et al., “
Experimental and theoretical study of the thermoelectric properties of copper selenide
,”
Semiconductors
51
,
854
857
(
2017
).
11.
B.
Gahtori
,
S.
Bathula
,
K.
Tyagi
et al., “Nanostructured copper-selenide with high thermoelectric figure-of-merit and process for the preparation thereof,” WO patent application PCT/IN2014/000,161 (2015).
12.
M.
Dresselhaus
,
G.
Chen
,
M.
Tang
,
R.
Yang
,
H.
Lee
et al., “
New directions for low-dimensional thermoelectric materials
,”
Adv. Mater.
19
,
1043
1053
(
2007
).
13.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’Quinn
, “
Thin-film thermoelectric devices with high room-temperature figures of merit
,”
Nature
413
,
597
(
2001
).
14.
T.
Harman
,
M.
Walsh
,
G.
Turner
et al., “
Nanostructured thermoelectric materials
,”
J. Electron. Mater.
34
,
L19
L22
(
2005
).
15.
C. B.
Vinning
, in Proceedings of 5th European Conference on Thermal-Sciences, Odessa (2007), pp.
5
10
; available at http://ect2007.its.org/ect2007.its.org/proc-contents.html.
16.
F.
Dominguez-Adame
,
M.
Martin-Gonzalez
,
D.
Sanchez
, and
A.
Cantarero
, “
Nanowires: A route to efficient thermoelectric devices
,”
Physica E: Low-dimensional Systems and Nanostructures
113
,
213
225
(
2019
).
17.
H.
Beyer
,
J.
Nurnus
,
H.
Böttner
et al., “
PbTe based superlattice structures with high thermoelectric efficiency
,”
Appl. Phys. Lett.
80
,
1216
1218
(
2002
).
18.
A.
Casian
,
I.
Sur
,
H.
Scherrer
, and
Z.
Dashevsky
, “
Thermoelectric properties of n-type PbTe/Pb1xEuxTe quantum wells
,”
Phys. Rev. B
61
,
15965
15974
(
2000
).
19.
D. A.
Broido
and
T. L.
Reinecke
, “
Theory of thermoelectric power factor in quantum well and quantum wire superlattices
,”
Phys. Rev. B
64
,
045324
(
2001
).
20.
B.
Xu
,
T.
Feng
,
M. T.
Agne
, and
L. O.
Zhou
, “
Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures
,”
Angew. Chem. Int. Ed.
56
,
3546
3551
(
2017
).
21.
C.-F.
Wu
,
T.-R.
Wei
,
F.-H.
Sun
, and
J.-F.
Li
, “
Nanoporous PbSe–SiO2 thermoelectric composites
,”
Adv. Sci.
4
,
1700199
(
2017
).
22.
W.
Shi
,
D.
Wang
, and
Z.
Shuai
, “
High-performance organic thermoelectric materials: Theoretical insights and computational design
,”
Adv. Electron. Mater.
(published online).
23.
Y.
Chang-Jiang
,
Z.
Hao-Li
, and
Z.
Qichun
, “
Recent progress in thermoelectric materials based on conjugated polymers
,”
Polymers
11
,
107
(
2019
).
24.
G.-H.
Kim
,
L.
Shao
,
K.
Zhang
, and
K. P.
Pipe
, “
Engineered doping of organic semiconductors for enhanced thermoelectric efficiency
,”
Nat. Mater.
12
,
719
(
2013
).
25.
K.
Zhang
,
J.
Qiu
, and
S.
Wang
, “
Thermoelectric properties of PEDOT nanowire/PEDOT hybrids
,”
Nanoscale
8
,
8033
8041
(
2016
).
26.
P.
Taroni
,
I.
Hoces
,
N.
Stingelin
et al., “
Thermoelectric materials: A brief historical survey from metal junctions and inorganic semiconductors to organic polymers
,”
Isr. J. Chem.
54
,
534
552
(
2014
).
27.
J.
Liu
,
Y.
Jia
,
Q.
Jiang
, and
F.
Jiang
, “
Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting
,”
ACS Appl. Mater. Interfaces
10
,
44033
44040
(
2018
).
28.
L.
Zhang
,
T.
Goto
,
I.
Imae
et al., “
Thermoelectric properties of PEDOT films prepared by electrochemical polymerization
,”
J. Polym. Sci. B
55
,
524
531
(
2017
).
29.
Z.
Li
,
H.
Sun
,
C.-L.
Hsiao
, and
Y.
Yao
, “
A free-standing high-output power density thermoelectric device based on structure-ordered PEDOT:PSS
,”
Adv. Electron. Mater.
4
,
1700496
(
2018
).
30.
Q.
Jiang
,
C.
Liu
,
D.
Zhu
et al., “
Simultaneous enhancement of the electrical conductivity and Seebeck coefficient of PEDOT-block-PEG/SWCNTs nanocomposites
,”
J. Electron. Mater.
44
,
1585
1591
(
2015
).
31.
H.
Li
,
E.
Plunkett
,
Z.
Cai
,
B.
Qiu
, and
T.
Wei
, “
Dopant-dependent increase in seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies
,”
Adv. Electron. Mater.
(published online).
32.
A.
Casian
, in Thermoelectric Handbook: Macro to Nano, edited by D. M. Rowe (CRC Press, 2006), Chap. 36.
33.
A.
Casian
,
V.
Dusciac
, and
I.
Coropceanu
, “
Huge carrier mobilities expected in quasi-one-dimensional organic crystals
,”
Phys. Rev. B
66
,
165404
(
2002
).
34.
L. C.
Isett
, “
Magnetic susceptibility, electrical resistivity, and thermoelectric power measurements of bis (tetrathiotetracene)-triiodide
,”
Phys. Rev. B
18
,
439
447
(
1978
).
35.
B.
Hilti
,
C. W.
Mayer
, and
G.
Rihs
, “
Electrical properties and structure of the organic metallic compound bis (tetraselenotetracene)-iodide,TSeT2I
,”
Helv. Chim. Acta
61
,
1462
1469
(
1978
).
36.
I.
Shchegolev
and
E.
Yagubskii
, in Extended Linear Chain Compounds, edited by J. S. Miller (Plenum Press, 1982), Vol. 2, pp. 385–434.
37.
L. I.
Buravov
,
O. N.
Eremenko
,
R. B.
Lyubovski
, and
E. B.
Yagubskii
, “
Structure and electromagnetic properties of a new high-conductivity complex TTT(TCNQ)2
,”
J. Exper. Theoret. Phys.
20
,
208
209
(
1974
); available at http://www.jetpletters.ac.ru/ps/1790/article_27307.shtml.
38.
A.
Casian
and
I.
Sanduleac
, “
Effect of interchain interaction on electrical conductivity in quasi-one-dimensional organic crystals of tetrathiotetracene-iodide
,”
J. Nanoelectron. Optoelectron.
7
,
706
711
(
2012
).
39.
A.
Casian
and
I.
Sanduleac
, “
Thermoelectric properties of tetrathiotetracene iodide crystals: modeling and experiment
,”
J. Electron. Mater.
43
,
3740
3745
(
2014
).
40.
A.
Casian
,
J.
Pflaum
, and
I.
Sanduleac
, “
Prospects of low dimensional organic materials for thermoelectric applications
,”
J. Thermoelectricity
1
,
16
(
2015
); available at http://jt.inst.cv.ua/jt_2015_01_en.pdf.
41.
D. N.
Zubarev
, “
Double-time green functions in statistical physics
,”
Sov. Phys. Usp.
3
,
320
(
1960
).
42.
S.
Andronic
and
A.
Casian
, “
Phonons near Peierls structural transition in quasi-one-dimensional organic crystals of TTF-TCNQ
,”
Adv. Mater. Phys. Chem.
6
,
98
(
2016
).
43.
A.
Casian
, “
Violation of the Wiedemann-Franz law in quasi-one-dimensional organic crystals
,”
Phys. Rev. B
81
,
155415
(
2010
).
44.
F.
Huewe
,
A.
Steeger
,
K.
Kostova
,
L.
Burroughs
,
I.
Bauer
,
P.
Strohriegl
,
V.
Dimitrov
,
S.
Woodward
, and
J.
Pflaum
, “
Low-cost and sustainable organic thermoelectrics based on low-dimensional molecular metals
,”
Adv. Mater.
29
,
1605682
(
2017
).
45.
H.
Ohta
,
S. W.
Kim
,
S.
Kaneki
,
A.
Yamamoto
, and
T.
Hashizume
, “
High thermoelectric power factor of high-mobility 2D electron gas
,”
Adv. Sci.
5
,
1700696
(
2018
).
46.
I.
Sanduleac
and
A.
Casian
, “
Nanostructured TTT(TCNQ)2 organic crystals as promising thermoelectric n-type materials: 3D modeling
,”
J. Electron. Mater.
45
,
1316
1320
(
2016
).
47.
K.
Pudzs
,
A.
Vembris
,
M.
Rutkis
, and
S.
Woodward
, “
Thin film organic thermoelectric generator based on tetrathiotetracene
,”
Adv. Electron. Mater.
3
,
1600429
(
2017
).
You do not currently have access to this content.