This paper presents a very compact simple double square shaped design of a Metamaterial Absorber (MA). The dimension of the square is 1.41×1.41mm2, and the overall dimension of the unit cell structure is 5×5mm2. A wideband of absorption is achieved from 14.44 GHz to 27.87 GHz having a bandwidth of 13.43 GHz at 10 dB, which covers the Ku (12 GHz–18 GHz) and K (18 GHz–27 GHz) bands approximately. The proposed structure finds application in the field of radar and satellite communications. The full width half maxima bandwidth achieved is 16.39 GHz (from 13.61 GHz to 30.00 GHz). Three absorption peaks are obtained at 16.54, 20.54, and 25.81 GHz with absorptivity of 99.89%, 99.95%, and 99.96%, respectively. The simulation of the proposed MA is carried out using ANSYS HFSSv19.1, and it is fabricated on FR4 (Flame Retardant) using a printed circuit board. Analysis is done under both normal incident and oblique incident for different angles. The measured and simulated results for absorption are almost very close to each other with little variation due to fabrication tolerances.

1.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
, “
Metamaterials and negative refractive index
,”
Science
305
(
5685
),
788
792
(
2004
).
2.
D.
Schurig
et al., “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
(
5801
),
977
980
(
2006
).
3.
C.
Barde
et al., “A novel ZOR-inspired patch antenna for vehicle mounting application,” in Ambient Communications and Computer Systems, edited by Y. C. Hu, S. Tiwari, K. Mishra, and M. Trivedi (Springer, Singapore, 2019), pp. 47–53.
4.
M.
Gil
,
J.
Bonache
, and
F.
Martin
, “
Metamaterial filters: A review
,”
Metamaterials
2
(
4
),
186
197
(
2008
).
5.
N.
Fang
and
X.
Zhang
, “Imaging properties of a metamaterial superlens,” in Proceedings of the 2nd IEEE Conference on Nanotechnology (IEEE, 2002).
6.
P.
Ranjan
et al., “
An ultrathin five-band polarization insensitive metamaterial absorber having hexagonal array of 2D-Bravais-lattice
,”
Prog. Electromagn. Res. C
87
,
13
23
(
2018
).
7.
S.
Ghosh
et al., “
An ultrawideband ultrathin metamaterial absorber based on circular split rings
,”
IEEE Antennas Wirel. Propag. Lett.
14
,
1172
1175
(
2015
).
8.
F.
Ding
et al., “
Ultra-broadband microwave metamaterial absorber
,”
Appl. Phys. Lett.
100
(
10
),
103506
(
2012
).
9.
Y.
Shen
et al., “
An extremely wideband and lightweight metamaterial absorber
,”
J. Appl. Phys.
117
(
22
),
224503
(
2015
).
10.
C.
Barde
,
A.
Choubey
, and
R.
Sinha
, “
A set square design metamaterial absorber for X-band applications
,”
J. Electromagn. Waves Appl.
(published online
2019
).
11.
B.
Wang
et al., “
Dendritic wideband metamaterial absorber based on resistance film
,”
Appl. Phys. A
118
(
4
),
1559
1563
(
2015
).
12.
P. K.
Singh
et al., “
Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate
,”
Appl. Phys. Lett.
99
(
26
),
264101
(
2011
).
13.
S.
Li
et al., “
Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances
,”
J. Appl. Phys.
116
(
4
),
043710
(
2014
).
14.
H.
Xiong
et al., “
An ultrathin and broadband metamaterial absorber using multi-layer structures
,”
J. Appl. Phys.
114
(
6
),
064109
(
2013
).
15.
F.
Ding
et al., “
Ultra-broadband microwave metamaterial absorber
,”
Appl. Phys. Lett.
100
(
10
),
103506
(
2012
).
16.
P.
Ranjan
et al., “
A six-band ultra-thin polarization-insensitive pixelated metamaterial absorber using a novel binary wind driven optimization algorithm
,”
J. Electromagnet. Waves Appl.
32
(
18
),
2367
2385
(
2018
).
17.
S.
Ghosh
,
S.
Bhattacharyya
, and
K. V.
Srivastava
, “
Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber
,”
Microw. Opt. Technol. Lett.
56
(
2
),
350
355
(
2014
).
18.
S.
Bhattacharyya
,
S.
Ghosh
, and
K. V.
Srivastava
, “
Bandwidth enhanced metamaterial absorber using electric field driven LC resonator for airborne radar applications
,”
Microw. Opt. Technol. Lett.
55
(
9
),
2131
2137
(
2013
).
19.
S.
Bhattacharyya
and
K. V.
Srivastava
, “
Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator
,”
J. Appl. Phys.
115
(
6
),
064508
(
2014
).
20.
D.
Sood
and
C. C.
Tripathi
, “
A wideband wide-angle ultra-thin metamaterial microwave absorber
,”
Prog. Electromagnet. Res.
44
,
39
46
(
2015
).
21.
G.
Sen
et al., “
Ultrathin miniaturized metamaterial perfect absorber for X-band application
,”
Microw. Opt. Technol. Lett.
58
(
10
),
2367
2370
(
2016
).
22.
M.
Yoo
and
S.
Lim
, “
Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer
,”
IEEE Trans. Antennas Propag.
62
(
5
),
2652
2658
(
2014
).
23.
M.
Zhao
et al., “
Novel absorber based on pixelated frequency selective surface using estimation of distribution algorithm
,”
IEEE Antennas Wirel. Propag. Lett.
14
,
1467
1470
(
2015
).
24.
S.
Ghosh
et al., “
An ultrawideband ultrathin metamaterial absorber based on circular split rings
,”
IEEE Antennas Wirel. Propag. Lett.
14
,
1172
1175
(
2015
).
You do not currently have access to this content.