In general, shock wave deformation studies of perfect single crystals may cause disagreement with the experimental findings as the complete elimination of all defects in the metallic system is not possible in reality. Here, we have studied the influence of edge and screw dislocations on the intensification of damage produced during the propagation of shock at various velocities. Various analyses have been performed such as common neighbor analysis, atomic strain analysis, stress analysis, and kinetic energy mapping to investigate the underlying plastic deformation mechanisms. Results have revealed that the presence of edge dislocations has caused intensified damage through localized amorphization and phase transition. In comparison with the perfect crystal, the presence of pre-existing edge dislocations has incurred an additional damage of ∼17% to the specimen region. On the other hand, the presence of screw dislocations in the specimen causes damage through shear bands and dislocation loop formation, which is found to constitute greater than 80% of the specimen region.

1.
E. J.
Lieberman
,
R. A.
Lebensohn
,
D. B.
Menasche
,
C. A.
Bronkhorst
, and
A. D.
Rollett
,
Acta Mater.
116
,
270
(
2016
).
2.
K.
Wang
,
S.
Xiao
,
H.
Deng
,
W.
Zhu
, and
W.
Hu
,
Int. J. Plast.
59
,
180
(
2014
).
3.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
, and
B. L.
Holian
,
Science
296
(
5573
),
1681
(
2002
).
4.
H.
Zong
,
X.
Ding
,
T.
Lookman
, and
J.
Sun
,
Acta Mater.
115
,
1
(
2016
).
5.
F. P.
Zhao
,
B.
Li
,
W. R.
Jian
,
L.
Wang
, and
S. N.
Luo
,
J. Appl. Phys.
118
(
3
),
035904
(
2015
).
6.
J. L.
Shao
,
A. M.
He
, and
P.
Wag
,
Comput. Mater. Sci.
151
,
240
(
2018
).
7.
C.
Garcia Amparan
and
R.
Ravelo
,
Bull. Am. Phys. Soc.
61
,
15
(
2016
).
8.
Y.
Ashkenazy
and
R. S.
Averback
,
Appl. Phys. Lett.
86
(
5
),
051907
(
2005
).
9.
T.
De Rességuier
,
S.
Hemery
,
E.
Lescoute
,
P.
Villechaise
,
G. I.
Kanel
, and
S. V.
Razorenov
,
J. Appl. Phys.
121
(
16
),
165104
(
2017
).
10.
M. W.
Chen
,
J. W.
McCauley
,
D. P.
Dandekar
, and
N. K.
Bourne
,
Nat. Mater.
5
(
8
),
614
(
2006
).
11.
T. P.
Remington
,
E. N.
Hahn
,
S.
Zhao
,
R.
Flanagan
,
J. C. E.
Mertens
,
S.
Sabbaghianrad
,
T. G.
Langdon
,
C. E.
Wehrenberg
,
B. R.
Maddox
,
D. C.
Swift
, and
B. A.
Remington
,
Acta Mater.
158
,
313
(
2018
).
12.
C. A.
Bronkhorst
,
G. T.
Gray
 III
,
F. L.
Addessio
,
V.
Livescu
,
N. K.
Bourne
,
S. A.
McDonald
, and
P. J.
Withers
,
J. Appl. Phys.
119
(
8
),
085103
(
2016
).
13.
J.
Wang
,
F.
Coppari
,
R. F.
Smith
,
J. H.
Eggert
,
A. E.
Lazicki
,
D. E.
Fratanduono
,
J.
Ryan Rygg
,
T. R.
Boehly
,
G. W.
Collins
, and
T. S.
Duffy
,
Phys. Rev. B
92
(
17
),
174114
(
2015
).
14.
M. A.
Meyers
,
Scr. Metall.
12
(
1
),
21
(
1978
).
15.
S.
Pal
,
K. V.
Reddy
, and
C.
Deng
,
Comput. Mater. Sci.
169
,
109122
(
2019
).
16.
M.
Aramfard
and
C.
Deng
,
Acta Mater.
146
,
304
(
2018
).
17.
K. V.
Reddy
,
M.
Meraj
, and
S.
Pal
,
Comput. Mater. Sci.
136
,
36
(
2017
).
18.
V.
Yamakov
,
D.
Wolf
,
S. R.
Phillpot
,
A. K.
Mukherjee
, and
H.
Gleiter
,
Nat. Mater.
3
(
1
),
43
(
2004
).
19.
K. V.
Reddy
and
S.
Pal
,
Trans. Indian Inst. Met.
71
(
7
),
1721
(
2018
).
20.
T.
Shimokawa
,
A.
Nakatani
, and
H.
Kitagawa
,
Phys. Rev. B
71
(
22
),
224110
(
2005
).
21.
K. V.
Reddy
and
S.
Pal
,
Mol. Simul.
44
(
17
),
1393
(
2018
).
22.
K. V.
Reddy
and
S.
Pal
,
J. Appl. Phys.
125
(
9
),
095101
(
2019
).
23.
H.
Van Swygenhoven
,
P. M.
Derlet
, and
A. G.
Frøseth
,
Acta Mater.
54
(
7
),
1975
(
2006
).
24.
A. G.
Frøseth
,
P. M.
Derlet
, and
H.
Van Swygenhoven
,
Acta Mater.
52
(
20
),
5863
(
2004
).
25.
A. H.
Zahiri
,
P.
Chakraborty
,
Y.
Wang
, and
L.
Cao
,
J. Appl. Phys.
126
(
7
),
075103
(
2019
).
26.
V. V.
Zhakhovsky
,
M. M.
Budzevich
,
N. A.
Inogamov
,
I. I.
Oleynik
, and
C. T.
White
,
Phys. Rev. Lett.
107
(
13
),
135502
(
2011
).
27.
G.
Agarwal
and
A. M.
Dongare
,
J. Appl. Phys.
119
(
14
),
145901
(
2016
).
28.
Q. L.
Xiong
,
T.
Kitamura
, and
Z.
Li
,
Mater. Sci. Eng. A
752
,
115
(
2019
).
29.
G.
Agarwal
and
A. M.
Dongare
,
Comput. Mater. Sci.
145
,
68
(
2018
).
30.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
, and
B. L.
Holian
,
Phys. Rev. B
72
(
6
),
064120
(
2005
).
31.
T. C.
Germann
,
B. L.
Holian
,
P. S.
Lomdahl
,
D.
Tanguy
,
M.
Mareschal
, and
R.
Ravelo
,
Metall. Mater. Trans. A
35
(
9
),
2609
(
2004
).
32.
L.
Cao
and
M.
Koslowski
,
J. Appl. Phys.
117
(
24
),
244301
(
2015
).
33.
R.
LeSar
,
Annu. Rev. Condens. Matter Phys.
5
(
1
),
375
(
2014
).
34.
L.
Cao
and
M.
Koslowski
,
Acta Mater.
61
(
4
),
1413
(
2013
).
35.
E.
Zaretsky
,
J. Appl. Phys.
78
(
6
),
3740
(
1995
).
36.
A.
Bisht
,
A.
Neogi
,
N.
Mitra
,
G.
Jagadeesh
, and
S.
Suwas
,
Shock Waves
29
(
7
),
913
(
2019
).
37.
E. N.
Hahn
and
S. J.
Fensin
,
J. Appl. Phys.
125
(
21
),
215902
(
2019
).
38.
R. W.
Armstrong
,
W.
Arnold
, and
F. J.
Zerilli
,
Metall. Mater. Trans A
38
(
11
),
2605
(
2007
).
39.
J. F.
Tang
,
J. C.
Xiao
,
L.
Deng
,
W.
Li
,
X. M.
Zhang
,
L.
Wang
,
S. F.
Xiao
,
H. Q.
Deng
, and
W. Y.
Hu
,
Phys. Chem. Chem. Phys.
20
(
44
),
28039
(
2018
).
40.
L.
Wu
,
K.
Wang
,
S.
Xiao
,
H.
Deng
,
W.
Zhu
, and
W.
Hu
,
Comput. Mater.Sci.
122
,
1
(
2016
).
41.
J. R.
Asay
,
G. R.
Fowles
,
G. E.
Durall
,
M. H.
Miles
, and
R. F.
Tinder
,
J. Appl. Phys.
43
(
5
),
2132
(
1972
).
42.
K. V.
Reddy
,
C.
Deng
, and
S.
Pal
,
Acta Mater.
164
,
347
(
2019
).
43.
E. Q.
Lin
,
H. J.
Shi
,
L. S.
Niu
, and
E. Z.
Jin
,
Comput. Mater. Sci.
59
,
94
(
2012
).
44.
K.
Wang
,
W.
Zhu
,
S.
Xiao
,
K.
Chen
,
H.
Deng
, and
W.
Hu
,
Int. J. Plast.
71
,
218
(
2015
).
45.
Y.
Huang
,
Y.
Xiong
,
P.
Li
,
X.
Li
,
S.
Xiao
,
H.
Deng
,
W.
Zhu
, and
W.
Hu
,
Int. J. Plast.
114
,
215
(
2019
).
46.
P.
Hirel
,
Comput. Phys. Commun.
197
,
212
(
2015
).
47.
S.
Plimpton
,
J. Comput. Phys.
117
(
1
),
1
(
1995
).
48.
M. I.
Mendelev
and
A. H.
King
,
Philos. Mag.
93
(
10–12
),
1268
(
2013
).
49.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2010
).
50.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
(
19
),
4950
(
1987
).
51.
D.
Faken
and
H.
Jónsson
,
Comput. Mater. Sci.
2
(
2
),
279
(
1994
).
52.
M. L.
Falk
and
J. S.
Langer
,
Phys. Rev. E
57
(
6
),
7192
(
1998
).
53.
F.
Shimizu
,
S.
Ogata
, and
J.
Li
,
Mater. Trans.
48
(
11
),
2923
(
2007
).
54.
A.
Stukowski
,
V. V.
Bulatov
, and
A.
Arsenlis
,
Modell. Simul. Mater. Sci. Eng.
20
(
8
),
085007
(
2012
).
55.
E. M.
Bringa
,
J. U.
Cazamias
,
P.
Erhart
,
J.
Stölken
,
N.
Tanushev
,
B. D.
Wirth
,
R. E.
Rudd
, and
M. J.
Caturla
,
J. Appl. Phys.
96
(
7
),
3793
(
2004
).
56.
K.
Kadau
,
F. J.
Cherne
,
R.
Ravelo
, and
T. C.
Germann
,
Phys. Rev. B
88
(
14
),
144108
(
2013
).
57.
E. N.
Hahn
,
S.
Zhao
,
E. M.
Bringa
, and
M. A.
Meyers
,
Sci. Rep.
6
,
26977
(
2016
).
58.
V. V.
Zhakhovsky
,
N. A.
Inogamov
,
B. J.
Demaske
,
I. I.
Oleynik
, and
C. T.
White
,
J. Phys. Conf. Ser.
500
(
17
),
172007
(
2014
).
59.
S.
Zhao
,
E. N.
Hahn
,
B.
Kad
,
B. A.
Remington
,
C. E.
Wehrenberg
,
E. M.
Bringa
, and
M. A.
Meyers
,
Acta Mater.
103
,
519
(
2016
).
60.
S.
Zhao
,
B.
Kad
,
E. N.
Hahn
,
B. A.
Remington
,
C. E.
Wehrenberg
,
C. M.
Huntington
,
H. S.
Park
,
E. M.
Bringa
,
K. L.
More
, and
M. A.
Meyers
,
Extreme Mech. Lett.
5
,
74
(
2015
).
61.
R.
Ravelo
,
T. C.
Germann
,
O.
Guerrero
,
Q.
An
, and
B. L.
Holian
,
Phys. Rev. B
88
(
13
),
134101
(
2013
).
62.
S.
Mahesh
,
Acta Mater.
54
(
17
),
4565
(
2006
).
63.
K. V.
Reddy
and
S.
Pal
,
Steel Res. Int.
90
(
7
),
1800636
(
2019
).
64.
B.
Sun
,
W.
Ouyang
,
J.
Ren
,
L.
Mi
, and
W.
Guo
,
Mater. Chem. Phys.
223
,
171
(
2019
).
65.
H.
Xie
,
F.
Yin
,
T.
Yu
,
G.
Lu
, and
Y.
Zhang
,
Acta Mater.
85
,
191
(
2015
).
66.
A.
Neogi
and
N.
Mitra
,
AIP Conf. Proc.
1832
(
1
),
030011
(
2017
).
67.
J. S.
Bowles
and
C. M.
Wayman
,
Metall. Trans.
3
(
5
),
1113
(
1972
).
68.
S.
Zhao
,
B.
Kad
,
C. E.
Wehrenberg
,
B. A.
Remington
,
E. N.
Hahn
,
K. L.
More
, and
M. A.
Meyers
,
Proc. Natl. Acad. Sci.
114
(
37
),
9791
(
2017
).

Supplementary Material

You do not currently have access to this content.