We study the thermal response of a single spherical metal nanoparticle to continuous wave illumination as a function of its size. We show that the particle temperature increases nonmonotonically as the particle size increases, indicating that the photothermal response can be optimized by tuning the particle size and illumination wavelength. We also compare the size-dependence of the photothermal effects of gold and silver nanoparticles and find somewhat surprisingly that Ag nanoparticles are more efficient heat generators only for sufficiently small sizes. These results have importance for applications such as plasmon-assisted photocatalysis, photothermal cancer therapy, etc. and provide a first step toward the study of the size-dependence of the thermo-optic nonlinearity of metal nanospheres.

1.
J. A.
Schuller
,
E. S.
Barnard
,
W.
Cai
,
Y. C.
Jun
,
J. S.
White
, and
M. L.
Brongersma
, “
Plasmonics for extreme light concentration and manipulation
,”
Nat. Mater.
9
,
193
204
(
2010
).
2.
V.
Giannini
,
A. I.
Fernández-Domínguez
,
S. C.
Heck
, and
S. A.
Maier
, “
Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters
,”
Chem. Rev.
111
,
3888
3912
(
2011
).
3.
S. A.
Maier
,
M. L.
Brongersma
,
P. G.
Kik
,
S.
Meltzer
,
A. A. G.
Requicha
, and
H. A.
Atwater
, “
Plasmonics—A route to nanoscale optical devices
,”
Adv. Mater.
13
,
1501
1505
(
2001
).
4.
P. V.
Kamat
, “
Photophysical, photochemical and photocatalytic aspects of metal nanoparticles
,”
J. Phys. Chem. B
106
,
7729
7744
(
2002
).
5.
P. K.
Jain
,
X.
Huang
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
, “
Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine
,”
Acc. Chem. Res.
41
,
1578
1586
(
2008
).
6.
K.
Saha
,
S. S.
Agasti
,
C.
Kim
,
X.
Li
, and
V. M.
Rotello
, “
Gold nanoparticles in chemical and biological sensing
,”
Chem. Rev.
112
,
2739
2779
(
2012
).
7.
L. A.
Dykman
and
N. G.
Khlebtsov
, “
Gold nanoparticles in biology and medicine: Recent advances and prospects
,”
Acta Nat.
3
,
34
55
(
2011
).
8.
E. C.
Dreaden
,
A. M.
Alkilany
,
X.
Huang
,
C. J.
Murphy
, and
M. A.
El-Sayed
, “
The golden age: Gold nanoparticles for biomedicine
,”
Chem. Soc. Rev.
41
,
2740
2779
(
2012
).
9.
A. O.
Govorov
and
H. H.
Richardson
, “
Generating heat with metal nanoparticles
,”
Nano Today
2
,
30
38
(
2007
).
10.
G.
Baffou
,
R.
Quidant
, and
F. J.
García de Abajo
, “
Nanoscale control of optical heating in complex plasmonic systems
,”
ACS Nano
4
,
709
716
(
2010
).
11.
G.
Baffou
and
R.
Quidant
, “
Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat
,”
Laser Photon. Rev.
7
,
171
187
(
2013
).
12.
G.
Baffou
,
P.
Berto
,
E.
Bermúdez Ureña
,
R.
Quidant
,
S.
Monneret
,
J.
Polleux
, and
H.
Rigneault
, “
Photoinduced heating of nanoparticle arrays
,”
ACS Nano
7
,
6478
6488
(
2013
).
13.
O.
Blum
and
N. T.
Shaked
, “
Prediction of photothermal phase signatures from arbitrary plasmonic nanoparticles and experimental verification
,”
Light Sci. Appl.
4
,
e322
(
2015
).
14.
D.
Boyer
,
P.
Tamarat
,
A.
Maali
,
B.
Lounis
, and
M.
Orrit
, “
Photothermal imaging of nanometer-sized metal particles among scatterers
,”
Science
297
,
1160
1163
(
2002
).
15.
L.
Cognet
,
S.
Berciaud
,
D.
Lasne
, and
B.
Lounis
, “
Photothermal methods for single nonluminescent nano-objects
,”
Anal. Chem.
80
,
2288
2294
(
2008
).
16.
M. B.
Cortie
,
D. L.
Cortie
, and
V.
Timchenko
, “
Heat transfer from nanoparticles for targeted destruction of infectious organisms
,”
Int. J. Hyperthermia
34
,
157
167
(
2018
).
17.
R. S.
Riley
and
E. S.
Day
, “
Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment
,”
Wiley Interdiscipl. Rev. Nanomed. Nanobiotechnol.
9
,
e1449
(
2017
).
18.
J. B.
Vines
,
J. H.
Yoon
,
N. E.
Ryu
,
D. J.
Lim
, and
H.
Park
, “
Gold nanoparticles for photothermal cancer therapy
,”
Front. Chem.
7
,
167
(
2019
).
19.
S.
Molesky
,
C. J.
Dewalt
, and
Z.
Jacob
, “
High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics
,”
Opt. Express
21
,
A96
A110
(
2013
).
20.
J.
Liu
,
U.
Guler
,
A.
Lagutchev
,
A.
Kildishev
,
O.
Malis
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Quasi-coherent thermal emitter based on refractory plasmonic materials
,”
Opt. Mater. Express
5
,
2721
2728
(
2015
).
21.
Y.
Osaka
,
S.
Sugano
, and
S.
Hashimoto
, “
Plasmonic-heating-induced nanofabrication on glass substrates
,”
Nanoscale
8
,
18187
18196
(
2016
).
22.
M.
Enders
,
S.
Mukai
,
T.
Uwada
, and
S.
Hashimoto
, “
Plasmonic nanofabrication through optical heating
,”
J. Phys. Chem. C
120
,
6723
6732
(
2016
).
23.
D.
Andrén
,
L.
Shao
,
N.
Odebo Länk
,
S. S.
Aćimović
,
P.
Johansson
, and
M.
Käll
, “
Probing photothermal effects on optically trapped gold nanorods by simultaneous plasmon spectroscopy and Brownian dynamics analysis
,”
ACS Nano
11
,
10053
10061
(
2017
).
24.
H.
Šípová
,
L.
Shao
,
N.
Odebo Länk
,
D.
Andrén
, and
M.
Käll
, “
Photothermal DNA release from laser-tweezed individual gold nanomotors driven by photon angular momentum
,”
ACS Photonics
5
,
2168
2175
(
2018
).
25.
S.
Jones
,
D.
Andrén
,
P.
Karpinski
, and
M.
Käll
, “
Photothermal heating of plasmonic nanoantennas: Influence on trapped particle dynamics and colloid distribution
,”
ACS Photonics
5
,
2878
2887
(
2018
).
26.
O.
Neumann
,
A. S.
Urban
,
J.
Day
,
S.
Lal
,
P.
Nordlander
, and
N. J.
Halas
, “
Solar vapor generation enabled by nanoparticles
,”
ACS Nano
7
,
42
49
(
2013
).
27.
Y.
Sivan
,
I. W.
Un
, and
Y.
Dubi
, “
Assistance of metal nanoparticles in photocatalysis—Nothing more than a classical heat source
,”
Faraday Discuss.
214
,
215
233
(
2019
).
28.
Y.
Sivan
,
J.
Baraban
,
I. W.
Un
, and
Y.
Dubi
, “
Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis”
,”
Science
364
,
eaaw9367
(
2019
).
29.
Y.
Sivan
,
I. W.
Un
, and
Y.
Dubi
, “Thermal effects—An alternative mechanism for plasmonic-assisted photo-catalysis,” e-print arXiv:1902.03169 (2019).
30.
J.
Aizpurua
et al., “
Theory of hot electrons: General discussion
,”
Faraday Discuss.
214
,
245
281
(
2019
).
31.
J.
Aizpurua
et al., “
Dynamics of hot electron generation in metallic nanostructures: General discussion
,”
Faraday Discuss.
214
,
123
146
(
2019
).
32.
X.
Li
,
X.
Zhang
,
H. O.
Everitt
, and
J.
Liu
, “
Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production
,”
Nano Lett.
19
,
1706
1711
(
2019
).
33.
S. W.
Chu
,
H. Y.
Wu
,
Y. T.
Huang
,
T. Y.
Su
,
H.
Lee
,
Y.
Yonemaru
,
M.
Yamanaka
,
R.
Oketani
,
S.
Kawata
,
S.
Shoji
, and
K.
Fujita
, “
Saturation and reverse saturation of scattering in a single plasmonic nanoparticle
,”
ACS Photonics
1
,
32
37
(
2014
).
34.
Y. T.
Chen
,
P. H.
Lee
,
P. T.
Shen
,
J.
Launer
,
R.
Oketani
,
K. Y.
Li
,
Y. T.
Huang
,
K.
Masui
,
S.
Shoji
,
K.
Fujita
, and
S. W.
Chu
, “
Study of nonlinear plasmonic scattering in metallic nanoparticles
,”
ACS Photonics
3
,
1432
1439
(
2016
).
35.
Y.
Sivan
and
S. W.
Chu
, “
Nonlinear plasmonics at high temperatures
,”
Nanophotonics
6
,
317
(
2017
).
36.
I.
Gurwich
and
Y.
Sivan
, “
Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics
,”
Phys. Rev. E
96
,
012212
(
2017
).
37.
D. A.
Boyd
,
L.
Greengard
,
M.
Brongersma
,
M. Y.
El-Naggar
, and
D. G.
Goodwin
, “
Plasmon-assisted chemical vapor deposition
,”
Nano Lett.
6
,
2592
2597
(
2006
).
38.
M.
Maley
,
J. W.
Hill
,
P.
Saha
,
J. D.
Walmsley
, and
C. M.
Hill
, “
The role of heating in the electrochemical response of plasmonic nanostructures under illumination
,”
J. Phys. Chem. C
123
,
12390
12399
(
2019
).
39.
Y.
Dubi
and
Y.
Sivan
, “
“Hot electrons” in metallic nanostructures—Non-thermal carriers or heating?
Light Sci. Appl. Nat.
8
(
1
),
89
(
2019
).
40.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
2008
).
41.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
(
CRC Press
,
1995
).
42.
The simulation domain was equivalent to a cubic box of edge length of 4 μm. Since we set the temperature to 300 K on the outer boundary, the simulated temperature distribution is around 0.4 K (1%) lower than the approximate analytic solution equation (2).
43.
P.-T.
Shen
,
Y.
Sivan
,
C.-W.
Lin
,
H.-L.
Liu
,
C.-W.
Chang
, and
S.-W.
Chu
, “
Temperature- and roughness-dependent permittivity of annealed/unannealed gold films
,”
Opt. Express
24
,
19254
19263
(
2016
).
44.
E.
Lukianova-Hleb
,
Y.
Hu
,
L.
Latterini
,
L.
Tarpani
,
S.
Lee
,
R. A.
Drezek
,
J. H.
Hafner
, and
D. O.
Lapotko
, “
Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles
,”
ACS Nano
4
,
2109
2123
(
2010
).
45.
T.
Katayama
,
K.
Setoura
,
D.
Werner
,
H.
Miyasaka
, and
S.
Hashimoto
, “
Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump–probe spectral measurements of aqueous colloidal gold nanoparticles
,”
Langmuir
30
,
9504
9513
(
2014
).
46.
K.
Metwally
,
S.
Mensah
, and
G.
Baffou
, “
Fluence threshold for photothermal bubble generation using plasmonic nanoparticles
,”
J. Phys. Chem. C
119
,
28586
28596
(
2015
).
47.
S. W.
Chu
,
T. Y.
Su
,
R.
Oketani
,
Y. T.
Huang
,
H. Y.
Wu
,
Y.
Yonemaru
,
M.
Yamanaka
,
H.
Lee
,
G. Y.
Zhuo
,
M. Y.
Lee
,
S.
Kawata
, and
K.
Fujita
, “
Measurement of a saturated emission of optical radiation from gold nanoparticles: Application to an ultrahigh resolution microscope
,”
Phys. Rev. Lett.
112
,
017402
(
2014
).
48.
L.
Meng
,
R.
Yu
,
M.
Qiu
, and
F. J.
Garcia de Abajo
, “
Plasmonic nano-oven by concatenation of multishell photothermal enhancement
,”
ACS Nano
11
,
7915
7924
(
2017
).
49.
S.
Anisimov
,
B.
Kapeliovich
, and
T.
Perel'man
, “
Electron emission from metal surfaces exposed to ultrashort laser pulses
,”
Sov. Phys. JETP
39
,
375
377
(
1974
); available at http://www.jetp.ac.ru/cgi-bin/e/index/e/39/2/p375?a=list
50.
G. L.
Pollack
, “
Kapitza resistance
,”
Rev. Mod. Phys.
41
,
48
81
(
1969
).
51.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
,
605
668
(
1989
).
52.
X.
Chen
,
A.
Munjiza
,
K.
Zhang
, and
D.
Wen
, “
Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool
,”
J. Phys. Chem. C
118
,
1285
1293
(
2014
).
53.
C.
Monachon
,
L.
Weber
, and
C.
Dames
, “
Thermal boundary conductance: A materials science perspective
,”
Annu. Rev. Mater. Res.
46
,
433
463
(
2016
).
54.
S.
Merabia
,
S.
Shenogin
,
L.
Joly
,
P.
Keblinski
, and
J.-L.
Barrata
, “
Heat transfer from nanoparticles: A corresponding state analysis
,”
Proc. Nat. Acad. Sci. U.S.A
106
,
15113
15118
(
2009
).
55.
J. C.
Duda
,
C.-Y. P.
Yang
,
B. M.
Foley
,
R.
Cheaito
,
D. L.
Medlin
,
R. E.
Jones
, and
P. E.
Hopkins
, “
Influence of interfacial properties on thermal transport at gold:silicon contacts
,”
Appl. Phys. Lett.
102
,
081902
(
2013
).
56.
S.
Guenneau
,
C.
Amra
, and
D.
Veynante
, “
Transformation thermodynamics: Cloaking and concentrating heat flux
,”
Opt. Express
20
,
8207
8218
(
2012
).
57.
K. P.
Vemuri
,
F. M.
Canbazoglu
, and
P. R.
Bandaru
, “
Guiding conductive heat flux through thermal metamaterials
,”
Appl. Phys. Lett.
105
,
193904
(
2014
).
58.
D. M.
Yu
,
Y. N.
Liu
,
F. L.
Tian
,
X. M.
Pan
, and
X. Q.
Sheng
, “
Accurate thermoplasmonic simulation of metallic nanoparticles
,”
J. Quant. Spectrosc. Radiat. Transfer
187
,
150
160
(
2017
).
59.
D. C.
Tzarouchis
,
P.
Ylä-Oijala
, and
A.
Sihvola
, “
Unveiling the scattering behavior of small spheres
,”
Phys. Rev. B
94
,
140301
(
2016
).
60.
D.
Tzarouchis
and
A.
Sihvola
, “
Light scattering by a dielectric sphere: Perspectives on the Mie resonances
,”
Appl. Sci.
8
,
184
(
2018
).
61.
M.
Meier
and
A.
Wokaun
, “
Enhanced fields on large metal particles: Dynamic depolarization
,”
Opt. Lett.
8
,
581
583
(
1983
).
62.
A.
Wokaun
,
J. P.
Gordon
, and
P. F.
Liao
, “
Radiation damping in surface-enhanced Raman scattering
,”
Phys. Rev. Lett.
48
,
957
960
(
1982
).
63.
Here, higher-order terms are required in order to increase the accuracy of the Padé approximate.
64.
A.
Lalisse
 et al,
J. Phys. Chem. C
119
,
25518
(
2015
).
You do not currently have access to this content.