In this work, the impact of roughness and amorphization on the effective thermal conductivity of silicon nanofilms and nanowires is studied with atomistic simulations. The discrepancy between simulations and experimental measurements shows that it is necessary to consider realistic roughness and amorphization to reach an agreement. We show that subnanometric roughness and specific correlation length can reduce thermal transport by a factor of two in both nanofilms and nanowires; in addition, this reduction is even more pronounced than the one related to the existence of native oxides or amorphous phases on nanostructure edges. Furthermore, an interfacial thermal resistance parallel to the heat flux is observed. This thermal resistance is increasing upon the increase of the amorphous shell thickness, reaching a maximum value for thickness of 6 nm. Our findings could improve the strategy to elaborate nanomaterials with enhanced thermoelectric efficiency by tuning thermal conductivity through the engineering of surfaces.

1.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
, “
Enhanced thermoelectric performance of rough silicon nanowires
,”
Nature
451
,
163
167
(
2008
).
2.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard III
, and
J. R.
Heath
, “
Silicon nanowires as efficient thermoelectric materials
,”
Nature
451
,
168
171
(
2008
).
3.
J.-K.
Yu
,
S.
Mitrovic
,
D.
Tham
,
J.
Varghese
, and
J. R.
Heath
, “
Reduction of thermal conductivity in phononic nanomesh structures
,”
Nat. Nanotechnol.
5
,
718
721
(
2010
).
4.
S.
Kotake
and
S.
Wakuri
, “
Molecular dynamics study of heat conduction in solid materials
,”
JSME Int. J. Ser. B
37
,
103
108
(
1994
).
5.
F.
Müller-Plathe
, “
A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
,”
J. Chem. Phys.
106
,
6082
6085
(
1997
).
6.
E.
Lampin
,
P. L.
Palla
,
P.-A.
Francioso
, and
F.
Cleri
, “
Thermal conductivity from approach-to-equilibrium molecular dynamics
,”
J. Appl. Phys.
114
,
033525
(
2013
).
7.
W.
Zhang
,
T.
Fisher
, and
N.
Mingo
, “
The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport
,”
Numer. Heat Transf. B Fundamentals
51
,
333
349
(
2007
).
8.
S.
Mazumder
and
A.
Majumdar
, “
Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
,”
J. Heat Transfer
123
,
749
(
2001
).
9.
J.-P. M.
Péraud
and
N. G.
Hadjiconstantinou
, “
Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations
,”
Phys. Rev. B
84
,
205331
(
2011
).
10.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
, “
Monte Carlo transient phonon transport in silicon and germanium at nanoscales
,”
Phys. Rev. B
72
,
064305
(
2005
).
11.
Y.
Chalopin
,
K.
Esfarjani
,
A.
Henry
,
S.
Volz
, and
G.
Chen
, “
Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics
,”
Phys. Rev. B
85
,
195302
(
2012
).
12.
K.
Termentzidis
,
P.
Chantrenne
, and
P.
Keblinski
, “
Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces
,”
Phys. Rev. B
79
,
214307
(
2009
).
13.
K.
Termentzidis
,
S.
Merabia
,
P.
Chantrenne
, and
P.
Keblinski
, “
Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics
,”
Int. J. Heat Mass Transf.
54
,
2014
2020
(
2011
).
14.
Y.
Lee
,
S.
Lee
, and
G. S.
Hwang
, “
Effects of vacancy defects on thermal conductivity in crystalline silicon: A nonequilibrium molecular dynamics study
,”
Phys. Rev. B
83
,
125202
(
2011
).
15.
S. G.
Volz
and
G.
Chen
, “
Molecular dynamics simulation of thermal conductivity of silicon nanowires
,”
Appl. Phys. Lett.
75
,
2056
2058
(
1999
).
16.
M.
Verdier
,
D.
Lacroix
,
S.
Didenko
,
J.-F.
Robillard
,
E.
Lampin
,
T.-M.
Bah
, and
K.
Termentzidis
, “
Influence of amorphous layers on the thermal conductivity of phononic crystals
,”
Phys. Rev. B
97
,
115435
(
2018
).
17.
E.
Chávez-Ángel
,
J. S.
Reparaz
,
J.
Gomis-Bresco
,
M. R.
Wagner
,
J.
Cuffe
,
B.
Graczykowski
,
A.
Shchepetov
,
H.
Jiang
,
M.
Prunnila
,
J.
Ahopelto
,
F.
Alzina
, and
C. M.
Sotomayor Torres
, “
Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry
,”
APL Mater.
2
,
012113
(
2014
).
18.
V.
Lacatena
,
M.
Haras
,
J.-F.
Robillard
,
S.
Monfray
,
T.
Skotnicki
, and
E.
Dubois
, “
Toward quantitative modeling of silicon phononic thermocrystals
,”
Appl. Phys. Lett.
106
,
114104
(
2015
).
19.
S.
Neogi
,
J. S.
Reparaz
,
L. F. C.
Pereira
,
B.
Graczykowski
,
M. R.
Wagner
,
M.
Sledzinska
,
A.
Shchepetov
,
M.
Prunnila
,
J.
Ahopelto
,
C. M.
Sotomayor-Torres
, and
D.
Donadio
, “
Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering
,”
ACS Nano
9
,
3820
3828
(
2015
).
20.
L.
Liu
and
X.
Chen
, “
Effect of surface roughness on thermal conductivity of silicon nanowires
,”
J. Appl. Phys.
107
,
033501
(
2010
).
21.
P.
Martin
,
Z.
Aksamija
,
E.
Pop
, and
U.
Ravaioli
, “
Impact of phonon-Surface roughness scattering on thermal conductivity of thin Si nanowires
,”
Phys. Rev. Lett.
102
,
125503
(
2009
).
22.
M.
Luisier
, “
Investigation of thermal transport degradation in rough Si nanowires
,”
J. Appl. Phys.
110
,
074510
(
2011
).
23.
Z.
Wang
,
Z.
Ni
,
R.
Zhao
,
M.
Chen
,
K.
Bi
, and
Y.
Chen
, “
The effect of surface roughness on lattice thermal conductivity of silicon nanowires
,”
Phys. B Condens. Matter
406
,
2515
2520
(
2011
).
24.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
25.
A.
McGaughey
and
J. M.
Larkin
, “
Predicting phonon properties from equilibrium molecular dynamics simulations
,”
Ann. Rev. Heat Transfer
17
,
49
87
(
2014
).
26.
D. P.
Sellan
,
E. S.
Landry
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
, “
Size effects in molecular dynamics thermal conductivity predictions
,”
Phys. Rev. B
81
,
214305
(
2010
).
27.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd ed. (
ANU E Press
,
Canberra
,
2007
).
28.
M.
Verdier
,
K.
Termentzidis
, and
D.
Lacroix
, “
Crystalline-amorphous silicon nano-composites: Nano-pores and nano-inclusions impact on the thermal conductivity
,”
J. Appl. Phys.
119
,
175104
(
2016
).
29.
M.
Verdier
,
D.
Lacroix
, and
K.
Termentzidis
, “
Heat transport in phononic-like membranes: Modeling and comparison with modulated nano-wires
,”
Int. J. Heat Mass. Transf.
114
,
550
558
(
2017
).
30.
F. H.
Stillinger
and
T. A.
Weber
, “
Computer simulation of local order in condensed phases of silicon
,”
Phys. Rev. B
31
,
5262
5271
(
1985
).
31.
R.
Vink
,
G.
Barkema
,
W.
van der Weg
, and
N.
Mousseau
, “
Fitting the Stillinger–Weber potential to amorphous silicon
,”
J. Non-Cryst. Solids
282
,
248
255
(
2001
).
32.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
33.
A. A.
Maznev
, “
Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit
,”
Phys. Rev. B
91
,
134306
(
2015
).
34.
R.
Anufriev
,
A.
Ramiere
,
J.
Maire
, and
M.
Nomura
, “
Heat guiding and focusing using ballistic phonon transport in phononic nanostructures
,”
Nature Commun.
8
,
15505
(
2017
).
35.
R.
Chen
,
A. I.
Hochbaum
,
P.
Murphy
,
J.
Moore
,
P.
Yang
, and
A.
Majumdar
, “
Thermal conductance of thin silicon nanowires
,”
Phys. Rev. Lett.
101
,
105501
(
2008
).
36.
J.
Lim
,
K.
Hippalgaonkar
,
S. C.
Andrews
,
A.
Majumdar
, and
P.
Yang
, “
Quantifying surface roughness effects on phonon transport in silicon nanowires
,”
Nano Lett.
12
,
2475
2482
(
2012
).
37.
J.
Lee
,
W.
Lee
,
J.
Lim
,
Y.
Yu
,
Q.
Kong
,
J. J.
Urban
, and
P.
Yang
, “
Thermal transport in silicon nanowires at high temperature up to 700 k
,”
Nano Lett.
16
,
4133
4140
(
2016
). pMID: 27243378.
38.
S.
Moon
,
M.
Hatano
,
M.
Lee
, and
C. P.
Grigoropoulos
, “
Thermal conductivity of amorphous silicon thin films
,”
Int. J. Heat Mass Transf.
45
,
2439
2447
(
2002
).
39.
V.
Jean
,
S.
Fumeron
,
K.
Termentzidis
,
S.
Tutashkonko
, and
D.
Lacroix
, “
Monte Carlo simulations of phonon transport in nanoporous silicon and germanium
,”
J. Appl. Phys.
115
,
024304
(
2014
).
40.
M.
Verdier
,
R.
Anufriev
,
A.
Ramiere
,
K.
Termentzidis
, and
D.
Lacroix
, “
Thermal conductivity of phononic membranes with aligned and staggered lattices of holes at room and low temperatures
,”
Phys. Rev. B
95
,
205438
(
2017
).
You do not currently have access to this content.