Using first-principles calculations, we study the structural, electronic, and optical properties of pristine BC3. Our results show that BC3 is a semiconductor which can be useful in optoelectronic device applications. Furthermore, we found that the electronic properties of BC3 can be modified by strain and the type of edge states. With increasing thickness, the indirect bandgap decreases from 0.7 eV (monolayer) to 0.27 eV (bulk). Upon uniaxial tensile strain along the armchair and zigzag directions, the bandgap slightly decreases, and with increasing uniaxial strain, the bandgap decreases, and when reaching 8%, a semiconductor-to-metal transition occurs. By contrast, under biaxial strain, the bandgap increases to 1.2 eV in +8% and decreases to zero in 8%. BC3 nanoribbons with different widths exhibit magnetism at the zigzag edges, while, at the armchair edges, they become semiconductor, and the bandgap is in the range of 1.0–1.2 eV. Moreover, we systematically investigated the effects of adatoms/molecule adsorption and defects on the structural, electronic, and magnetic properties of BC3. The adsorption of various adatoms and molecules as well as topological defects (vacancies and Stone-Wales defects) can modify the electronic properties. Using these methods, one can tune BC3 into a metal, half-metal, ferromagnetic-metal, and dilute-magnetic semiconductor or preserve its semiconducting character.

1.
A.
Rubio
, “
Nanoscale patchworks
,”
Nat. Mater.
9
,
379
(
2010
).
2.
M.
Kawaguchi
, “
B/C/N materials based on the graphite network
,”
Adv. Mater.
9
,
615
625
(
1997
).
3.
R. B.
Kaner
,
J.
Kouvetakis
,
C. E.
Warble
,
M. L.
Sattler
, and
N.
Bartlett
, “
Boron-carbon-nitrogen materials of graphite-like structure
,”
Mater. Res. Bull.
22
,
399
404
(
1987
).
4.
M.
O.Watanabe
,
S.
Itoh
,
K.
Mizushima
, and
T.
Sasaki
, “
Electrical properties of BC2N thin films prepared by chemical vapor deposition
,”
J. Appl. Phys.
78
,
2880
2882
(
1995
).
5.
M.
Kawaguchi
,
T.
Kawashima
, and
T.
Nakajima
, “
Syntheses and structures of new graphite-like materials of composition BCN(H) and BC3N(H)
,”
Chem. Mater.
8
,
1197
1201
(
1996
).
6.
J.
Kouvetakis
,
T.
Sasaki
,
C.
Shen
,
R.
Hagiwara
,
M.
Lerner
,
K. M.
Krishnan
, and
N.
Bartlett
, “
Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network
,”
Synthetic Met.
34
,
1
7
(
1989
).
7.
T.
Sasaki
,
M.
Akaishi
,
S.
Yamaoka
,
Y.
Fujiki
, and
T.
Oikawa
, “
Simultaneous crystallization of diamond and cubic boron nitride from the graphite relative boron carbide nitride (BC2N) under high pressure/high temperature conditions
,”
Chem. Mater.
5
,
695
699
(
1993
).
8.
A. Y.
Liu
,
R. M.
Wentzcovitch
, and
M. L.
Cohen
, “
Atomic arrangement and electronic structure of BC2N
,”
Phys. Rev. B
39
,
1760
1765
(
1989
).
9.
H.
Nozaki
and
S.
Itoh
, “
Structural stability of BC2N
,”
J. Phys. Chem. Solids
57
,
41
49
(
1996
).
10.
A.
Rubio
,
J. L.
Corkill
, and
M. L.
Cohen
, “
Theory of graphitic boron nitride nanotubes
,”
Phys. Rev. B
49
,
5081
5084
(
1994
).
11.
Y.
Miyamoto
,
A.
Rubio
,
M. L.
Cohen
, and
S. G.
Louie
, “
Chiral tubules of hexagonal BC2N
,”
Phys. Rev. B
50
,
4976
4979
(
1994
).
12.
Z.
Weng-Sieh
,
K.
Cherrey
,
N. G.
Chopra
,
X.
Blase
,
Y.
Miyamoto
,
A.
Rubio
,
M. L.
Cohen
,
S. G.
Louie
,
A.
Zettl
, and
R.
Gronsky
, “
Synthesis of BxCyNz nanotubules
,”
Phys. Rev. B
51
,
11229
11232
(
1995
).
13.
T. B.
Martins
,
R. H.
Miwa
,
A. J. R.
da Silva
, and
A.
Fazzio
, “
Electronic and transport properties of boron-doped graphene nanoribbons
,”
Phys. Rev. Lett.
98
,
196803
(
2007
).
14.
M.
Deifallah
,
P. F.
McMillan
, and
F.
Corá
, “
Electronic and structural properties of two-dimensional carbon nitride graphenes
,”
J. Phys. Chem. C
112
,
5447
5453
(
2008
).
15.
D.
Wei
,
Y.
Liu
,
Y.
Wang
,
H.
Zhang
,
L.
Huang
, and
G.
Yu
, “
Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
,”
Nano Lett.
9
,
1752
1758
(
2009
).
16.
W.-Q.
Han
,
W.
Mickelson
,
J.
Cumings
, and
A.
Zettl
, “
Transformation of BxCyNz nanotubes to pure BN nanotubes
,”
Appl. Phys. Lett.
81
,
1110
1112
(
2002
).
17.
E.
Hernández
,
C.
Goze
,
P.
Bernier
, and
A.
Rubio
, “
Elastic properties of C and BxCyNz composite nanotubes
,”
Phys. Rev. Lett.
80
,
4502
4505
(
1998
).
18.
M. O.
Watanabe
,
S.
Itoh
,
T.
Sasaki
, and
K.
Mizushima
, “
Visible-light-emitting layered BC2N semiconductor
,”
Phys. Rev. Lett.
77
,
187
189
(
1996
).
19.
W. R. L.
Lambrecht
and
B.
Segall
, “
Anomalous band-gap behavior and phase stability of c-BN-diamond alloys
,”
Phys. Rev. B
47
,
9289
9296
(
1993
).
20.
A. W.
Moore
,
S. L.
Strong
,
G. L.
Doll
,
M. S.
Dresselhaus
,
I. L.
Spain
,
C. W.
Bowers
,
J. P.
Issi
, and
L.
Piraux
, “
Properties and characterization of codeposited boron nitride and carbon materials
,”
J. Appl. Phys.
65
,
5109
5118
(
1989
).
21.
A.
Essafti
,
E.
Ech-chamikh
, and
J. L. G.
Fierro
, “
Structural and chemical analysis of amorphous B–N–C thin films deposited by RF sputtering
,”
Diam. Relat. Mater.
14
,
1663
1668
(
2005
).
22.
H.
Yanagisawa
,
T.
Tanaka
,
Y.
Ishida
,
M.
Matsue
,
E.
Rokuta
,
S.
Otani
, and
C.
Oshima
, “
Phonon dispersion curves of a BC3 honeycomb epitaxial sheet
,”
Phys. Rev. Lett.
93
,
177003
(
2004
).
23.
H.
Tanaka
,
Y.
Kawamata
,
H.
Simizu
,
T.
Fujita
,
H.
Yanagisawa
,
S.
Otani
, and
C.
Oshima
, “
Novel macroscopic BC3 honeycomb sheet
,”
Solid State Commun.
136
,
22
25
(
2005
).
24.
H.
Yanagisawa
,
T.
Tanaka
,
Y.
Ishida
,
M.
Matsue
,
E.
Rokuta
,
S.
Otani
, and
C.
Oshima
, “
Phonon dispersion curves of stable and metastable BC3 honeycomb epitaxial sheets and their chemical bonding: Experiment and theory
,”
Phys. Rev. B
73
,
045412
(
2006
).
25.
D.
Tomanek
,
R. M.
Wentzcovitch
,
S. G.
Louie
, and
M. L.
Cohen
, “
Calculation of electronic and structural properties of BC3
,”
Phys. Rev. B
37
,
3134
3136
(
1988
).
26.
Y.
Ding
,
Y.
Wang
, and
J.
Ni
, “
Electronic structures of BC3 nanoribbons
,”
Appl. Phys. Lett.
94
,
073111
(
2009
).
27.
J.
Zhu
,
S.
Bhandary
,
B.
Sanyal
, and
H.
Ottosson
, “
Interpolation of atomically thin hexagonal boron nitride and graphene: Electronic structure and thermodynamic stability in terms of all-carbon conjugated paths and aromatic hexagons
,”
J. Phys. Chem. C
115
,
10264
10271
(
2011
).
28.
Q.
Peng
and
S.
De
, “
Tunable band gaps of mono-layer hexagonal BNC heterostructures
,”
Physica E
44
,
1662
1666
(
2012
).
29.
C.
Popov
,
K.
Saito
,
B.
Ivanov
,
Y.
Koga
,
S.
Fujiwara
, and
V.
Shanov
, “
Chemical vapour deposition of BC2N films and their laser-induced etching with SF6
,”
Thin Solid Films
312
,
99
105
(
1998
).
30.
A.
Perrone
,
A. P
Caricato
,
A.
Luches
,
M.
Dinescu
,
C.
Ghica
,
V.
Sandu
, and
A.
Andrei
, “
Boron carbonitride films deposited by pulsed laser ablation
,”
Appl. Surf. Sci.
133
,
239
242
(
1998
).
31.
J.
Kouvetakis
,
R. B.
Kaner
,
M. L.
Sattler
, and
N.
Bartlett
, “
A novel graphite-like material of composition BC3 and nitrogen–carbon graphites
,”
J. Chem. Soc. Chem. Commun.
24
,
1758
1759
(
1986
).
32.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
10453
(
2005
).
33.
Z.
Yang
and
J.
Nia
, “
Hydrogen storage on calcium-decorated BC3 sheet: A first principles study
,”
Appl. Phys. Lett.
97
,
253117
(
2010
).
34.
Z.
Yang
and
J.
Ni
, “
Li-doped BC3 sheet for high-capacity hydrogen storage
,”
Appl. Phys. Lett.
100
,
183109
(
2012
).
35.
X.
Chen
and
J.
Ni
, “
Fermi surface nesting and magnetic quantum phase transition in graphenelike BC3: A first-principles study
,”
Phys. Rev. B
88
,
115430
(
2013
).
36.
F.-C.
Chuang
,
Z.-Q.
Huang
,
W.-H.
Lin
,
M. A.
Albao
, and
W.-S.
Su
, “
Structural and electronic properties of hydrogen adsorptions on BC3 sheet and graphene: A comparative study
,”
Nanotechnology
22
,
135703
(
2011
).
37.
D.
Ma
,
W.
Ju
,
X.
Chu
,
Z.
Lu
, and
Z.
Fu
, “
First-principles studies of Fe atoms adsorption on hydrogen-terminated boron nitride nanoribbons
,”
Phys. Lett. A
377
,
1016
1020
(
2013
).
38.
Y.
Hwang
and
Y.-C.
Chung
, “
Comparative study of metal atom adsorption on free-standing h-BN and h-BN/Ni (111) surfaces
,”
Appl. Surf. Sci.
299
,
29
34
(
2014
).
39.
Z.-R.
Ning
,
Z.
Chen
,
X.-j.
Du
, and
R.-X.
Ran
, “
Mn adsorption on C substituted BN sheet: First-principle study
,”
Superlattices Microstruct.
62
,
175
181
(
2013
).
40.
Y.-J.
Liu
,
B.
Gao
,
D.
Xu
,
H.-M.
Wang
, and
J.-X.
Zhao
, “
Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: Electronic, magnetic properties, and reactivity
,”
Phys. Lett. A
378
,
2989
2994
(
2014
).
41.
R. S.
Singh
,
R. Y.
Tay
,
W. L.
Chow
,
S. H.
Tsang
,
G.
Mallick
, and
E. H.
Tong Teo
, “
Band gap effects of hexagonal boron nitride using oxygen plasma
,”
Appl. Phys. Lett.
104
,
163101
(
2014
).
42.
H.
Kökten
and
Ş.
Erkoç
, “
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets
,”
Physica E
44
,
215
217
(
2011
).
43.
J.
Beheshtian
,
A.
Sadeghi
,
M.
Neek-Amal
,
K. H.
Michel
, and
F. M.
Peeters
, “
Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons
,”
Phys. Rev. B
86
,
195433
(
2012
).
44.
Y. F.
Zhukovskii
,
S.
Piskunov
,
J.
Kazerovskis
,
D. V.
Makaev
, and
P. N.
D’yachkov
, “
Comparative theoretical analysis of BN nanotubes doped with Al, P, Ga, As, In, and Sb
,”
J. Phys. Chem. C
117
,
14235
14240
(
2013
).
45.
L.
Lai
and
J.
Lu
, “
Half metallicity in BC2N nanoribbons: Stability, electronic structures, and magnetism
,”
Nanoscale
3
,
2583
2588
(
2011
).
46.
T.
Kaneko
and
K.
Harigaya
, “
Dependence of atomic arrangement on length of flat bands in zigzag BC2N nanoribbons
,”
J. Phys. Soc. Jpn.
82
,
044708
(
2013
).
47.
Y.
Ding
,
Y.
Wang
, and
J.
Ni
, “
Structural, electronic, and magnetic properties of defects in the BC3 sheet from first principles
,”
J. Phys. Chem. C
114
,
12416
12421
(
2010
).
48.
Q.
Tang
and
Z.
Zhou
, “
Graphene-analogous low-dimensional materials
,”
Prog. Mater. Sci.
58
,
1244
1315
(
2013
).
49.
N.
Alem
,
R.
Erni
,
C.
Kisielowski
,
M. D.
Rossell
,
W.
Gannett
, and
A.
Zettl
, “
Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy
,”
Phys. Rev. B
80
,
155425
(
2009
).
50.
X.
Li
,
X.
Wu
,
X. C.
Zeng
, and
J.
Yang
, “
Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes
,”
ACS Nano
6
,
4104
4112
(
2012
).
51.
Y.
Ding
and
J.
Ni
, “
Tuning electronic properties of hydro-boron-carbon compounds by hydrogen and boron contents: A first principles study
,”
J. Phys. Chem. C
113
,
18468
18472
(
2009
).
52.
S.
Dutta
and
K.
Wakabayashi
, “
Edge state induced metallicity in zigzag BC3 ribbons
,”
J. Mater. Chem. C
1
,
4854
4857
(
2013
).
53.
W. S.
Su
,
C. P.
Chang
,
M. F.
Lin
, and
T. L.
Li
, “
Electronic structures and work functions of BC3 nanotubes: A first-principle study
,”
J. Appl. Phys.
110
,
014312
(
2011
).
54.
Y.
Wang
,
Y.
Li
, and
Z.
Chen
, “
Reducing band gap and enhancing carrier mobility of boron nitride nanoribbons by conjugated edge states
,”
J. Phys. Chem. C
118
,
25051
25056
(
2014
).
55.
D.
Krepel
and
O.
Hod
, “
Effects of edge oxidation on the structural, electronic, and magnetic properties of zigzag boron nitride nanoribbons
,”
J. Chem. Theory Comput.
10
,
373
380
(
2014
).
56.
A.
Lopez-Bezanilla
,
J.
Huang
,
H.
Terrones
, and
B. G.
Sumpter
, “
Structure and electronic properties of edge-functionalized armchair boron nitride nanoribbons
,”
J. Phys. Chem. C
116
,
15675
15681
(
2012
).
57.
Q.
Tang
,
J.
Bao
,
Y.
Li
,
Z.
Zhou
, and
Z.
Chen
, “
Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field
,”
Nanoscale
6
,
8624
8634
(
2014
).
58.
A.
Bafekry
,
S.
Farjami Shayesteh
, and
F. M.
Peeters
, “
C3N monolayer: Exploring the emerging of novel electronic and magnetic properties with adatom adsorption, functionalizations, electric field, charging and strain
,”
J. Phys. Chem. C
123
,
12485
12499
(
2019
).
59.
M.
Makaremi
,
B.
Mortazavi
, and
C. V.
Singh
, “
Adsorption of metallic, metalloidic, and nonmetallic adatoms on two-dimensional C3N
,”
Phys. Chem. C
121
,
18575
18583
(
2017
).
60.
B.
Mortazavi
,
M.
Shahrokhi
,
M.
Raeisi
,
X.
Zhuang
,
O.
Rahaman
,
L. F. C.
Pereira
, and
T.
Rabczuk
, “
Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors
,”
Carbon
49
,
733
742
(
2019
).
61.
A.
Bafekry
,
M.
Ghergherehchi
,
S.
Farjami Shayesteh
, and
F. M.
Peeters
, “
Adsorption of molecules on C3N nanosheet: A first-principles calculations
,”
Chem. Phys.
526
,
110442
(
2019
).
62.
M. B.
Tagani
, “
Electrical and mechanical properties of a fully hydrogenated two-dimensional polyaniline sheet
,”
Comput. Mater. Sci.
153
,
126
133
(
2018
).
63.
M.
Yagmurcukardes
,
C.
Bacaksiz
,
R. T.
Senger
, and
H.
Sahin
, “
Hydrogen-induced structural transition in single layer ReS2
,”
2D Mater.
4
,
035013
(
2017
).
64.
A.
Bafekry
,
M.
Ghergherehchi
, and
S.
Farjami Shayesteh
, “
Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: First-principles calculations
,”
Phys. Chem. Chem. Phys.
21
,
10552
10566
(
2019
).
65.
B.
Mortazavi
,
O.
Rahaman
,
T.
Rabczuk
, and
L. F. C.
Pereira
, “
Thermal conductivity and mechanical properties of nitrogenated Holey graphene
,”
Carbon
106
,
1
8
(
2016
).
66.
M. B.
Tagani
and
S. I.
Vishkayi
, “
Polyaniline (C3N) nanoribbons: Magnetic metal, semiconductor, and half-metal
,”
J. Appl. Phys.
124
,
084304
(
2018
).
67.
A.
Bafekry
,
B.
Mortazavi
, and
S.
Farjami Shayesteh
, “
Band gap and magnetism engineering in Dirac half-metallic Na2C nanosheet via layer thickness, strain and point defects
,”
J. Magn. Magn. Mater.
491
,
165565
(
2019
).
68.
B.
Mortazavi
, “
Ultra high stiffness and thermal conductivity of graphene like C3N
,”
Carbon
118
,
25
34
(
2017
).
69.
A.
Bafekry
,
C.
Stampfl
,
S.
Farjami Shayesteh
, and
F. M.
Peeters
, “
Exploiting the novel electronic and magnetic structure of C3N via functionalization and conformation
,”
Adv. Electron. Mater.
(published online
2019
).
70.
M.
Yagmurcukardes
, “
Monolayer fluoro-InSe: Formation of a thin monolayer via fluorination of InSe
,”
Phys. Rev. B
100
,
024108
(
2018
).
71.
A.
Bafekry
,
S.
Farjami Shayesteh
, and
F. M.
Peeters
, “
Introducing novel electronic and magnetic properties in C3N nanosheet by defect engineering and atom substitution
,”
Phys. Chem. Chem. Phys.
21
,
21070
(
2019
).
72.
Y.
Kadioglu
,
F.
Ersan
,
G.
Gokoglu
,
O. U.
Akturk
, and
E.
Akturk
, “
Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study
,”
Mater. Chem. Phys.
180
,
326
331
(
2016
).
73.
Z. H.
Ni
,
T.
Yu
,
Y. H.
Lu
,
Y. Y.
Wang
,
Y. P.
Feng
, and
Z. X.
Shen
, “
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
,”
ACS Nano
2
,
2301
2305
(
2008
).
74.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
,
S. T.
Pantelides
, and
K. I.
Bolotin
, “
Bandgap engineering of strained monolayer and bilayer MoS2
,”
Nano Lett.
13
,
3626
3630
(
2013
).
75.
A. S.
Rodin
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
Strain-induced gap modification in black phosphorus
,”
Phys. Rev. Lett.
112
,
176801
(
2014
).
76.
T.
Ozaki
, “
Variationally optimized atomic orbitals for large-scale electronic structures
,”
Phys. Rev. B
67
,
155108
(
2003
).
77.
T.
Ozaki
and
H.
Kino
, “
Numerical atomic basis orbitals from H to Kr
,”
Phys. Rev. B
69
,
195113
(
2004
).
78.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
79.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
80.
T.
Bučko
,
J.
Hafner
,
S.
Lebégue
, and
J. G.
Ángyán
, “
Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections
,”
J. Phys. Chem. A
114
,
11814
11824
(
2010
).
81.
J.
Tersoff
and
D. R.
Hamann
, “
Theory and application for the scanning tunneling microscope
,”
Phys. Rev. Lett.
50
,
1998
2001
(
1983
).
82.
I.
Horcas
,
R.
Fernández
,
J. M.
Gómez-Rodríguez
,
J.
Colchero
,
J.
Gómez-Herrero
, and
A. M.
Baro
, “
WSXM: A software for scanning probe microscopy and a tool for nanotechnology
,”
Rev. Sci. Instrum.
78
,
013705
(
2007
).
83.
N.
Troullier
and
J.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
2006
(
1991
).
84.
R. S.
Mulliken
, “
Electronic population analysis on LCAO–MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories
,”
J. Chem. Phys.
23
,
2343
2346
(
1955
).
85.
J. M
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garcí
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
86.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I
Dabo
,
A.
Corso
,
S. d.
Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
87.
N.
Marzari
,
D.
Vanderbilt
,
A.
De Vita
, and
M. C.
Payne
, “
Thermal contraction and disordering of the Al(110) surface
,”
Phys. Rev. Lett.
82
,
3296
3299
(
1999
).
88.
H.
Jonsson
,
G.
Mills
, and
K. W.
Jacobsen
,
Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions Book Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
2011
), pp.
385
404
.
89.
H. A.
Jahn
and
E.
Teller
, “
Stability of polyatomic molecules in degenerate electronic states—I—Orbital degeneracy
,”
Proc. R. Soc. Lond. A
161
,
220
235
(
1937
).
90.
S.
Behzad
, “
Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain
,”
Surf. Sci.
665
,
37
42
(
2017
).

Supplementary Material

You do not currently have access to this content.