CoO-doping is known to stabilize the temperature dependence of initial permeability and magnetic losses in Mn-Zn ferrites, besides providing, with appropriate dopant contents, good soft magnetic response at and around room temperature. These effects, thought to derive from the mechanism of anisotropy compensation, are, however, poorly assessed from a quantitative viewpoint. In this work, we overcome such limitations by providing, besides extensive experimental investigation vs frequency (DC–1 GHz), CoO content (0 ≤ CoO ≤ 6000 ppm), and temperature (−20 °C ≤ T ≤ 130 °C) of permeability and losses of sintered Mn-Zn ferrites, a comprehensive theoretical framework. This relies on the separate identification of domain wall motion and moment rotations and on a generalized approach to magnetic loss decomposition. The average effective anisotropy constant ⟨Keff⟩ is obtained and found to monotonically decrease with temperature, depending on the CoO content. The quasistatic energy loss Wh is then predicted to pass through a deep minimum for CoO = 3000–4000 ppm at and below the room temperature, while becoming weakly dependent on CoO under increasing T. The rotational loss Wrot(f) is calculated via the complex permeability, as obtained from the Landau-Lifshitz equation for distributed values of the local effective anisotropy field Hk,eff (i.e., ferromagnetic resonance frequency). Finally, the excess loss Wexc(f) is derived and found to comply with suitable analytical formulation. It is concluded that, by achieving, via the rotational permeability, value and behavior of the magnetic anisotropy constant, we can predict the ensuing properties of hysteresis, excess, and rotational losses.

1.
H.
Shokrollahi
and
K.
Janghorban
, “
Influence of additives on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites
,”
Mater. Sci. Eng. B
141
,
91
107
(
2007
).
2.
A.
Znidarsic
,
M.
Limpel
, and
M.
Drofenik
, “
Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies
,”
IEEE Trans. Magn.
31
,
950
953
(
1995
).
3.
H.
Pascard
, “
Basic concepts for high permeability in soft ferrites
,”
J. Phys. IV France
8
,
Pr2377
Pr-384
(
1998
).
4.
V. T.
Zaspalis
and
E.
Eleftheriou
, “
The effect of TiO2 on the magnetic power losses and electrical resistivity of polycrystalline MnZn ferrites
,”
J. Phys. D Appl. Phys.
38
,
2156
2161
(
2005
).
5.
A.
Gonchar
,
S.
Katynkina
,
L.
Letyuk
, and
I.
Ryabov
, “
The influence of microstructure parameters on the magnetic losses in soft magnetic ferrites for television engineering
,”
J. Magn. Magn. Mater.
215–216
,
224
226
(
2000
).
6.
L.
Li
,
Z.
Lan
,
Z.
Yu
, and
K.
Sun
, “
Influence of Fe2O3 stoichiometry on initial permeability and temperature dependence of core loss in MnZn ferrites
,”
IEEE Trans. Magn.
44
,
13
16
(
2008
).
7.
V.
Zaspalis
,
V.
Tsakaloudi
,
E.
Papazoglou
,
M.
Kolenbrander
,
R.
Guenther
, and
P.
van der Valk
, “
Development of a new MnZn ferrite soft magnetic material for high temperature power applications
,”
J. Electroceram.
13
,
585
591
(
2004
).
8.
J.
Hanuszkiewicz
,
D.
Holz
,
E.
Eleftheriou
, and
V.
Zaspalis
, “
Materials processing issues influencing the frequency stability of the initial magnetic permeability of MnZn ferrites
,”
J. Appl. Phys.
103
,
103907
(
2008
).
9.
A.
Fujita
and
S.
Gotoh
, “
Temperature dependence of core loss in Co-substituted MnZn ferrites
,”
J. Appl. Phys.
93
,
7477
7479
(
2003
).
10.
S.-F.
Wang
,
Y.-J.
Chiang
,
Y.-F.
Hsu
, and
C.-H.
Chen
, “
Effects of additives on the loss characteristics of Mn-Zn ferrite
,”
J. Magn. Magn. Mater.
365
,
119
125
(
2014
).
11.
V.
Tsakaloudi
,
G.
Kogias
, and
V. T.
Zaspalis
, “
A new power MnZn ferrite for broad temperature range applications
,”
AIP Adv.
9
,
035212
(
2019
).
12.
G.
Herzer
, “
Nanocrystalline soft magnetic alloys
,” in
Handbook of Magnetic Materials
, edited by
K. H. J.
Buschow
(
Elsevier Science
,
Amsterdam
,
1997
), Vol. 10, pp.
415
462
.
13.
A. D.
Giles
and
F. F.
Westendorf
, “
The effect of cobalt substitutions on some properties of manganese zinc ferrites
,”
J. Phys. D Appl. Phys.
9
,
2117
2122
(
1976
).
14.
L.
Li
,
Z.
Lan
,
Z.
Yu
,
K.
Sun
, and
Z.
Xu
, “
Effects of Co-substitution on wide temperature ranging characteristic of electromagnetic properties in MnZn ferrites
,”
J. Alloys Compd.
476
,
755
759
(
2009
).
15.
K.
Mori
,
K.
Yasuhara
,
I.
Nakahata
, and
K.
Nishikawa
, “
High temperature stability of Co-doped MnZn ferrites for automobiles
,”
J. Jpn. Soc. Powder Powder Metall.
61
,
S224
S226
(
2014
).
16.
C.
Beatrice
,
V.
Tsakaloudi
,
S.
Dobák
,
V.
Zaspalis
, and
F.
Fiorillo
, “
Magnetic losses versus sintering treatment in Mn-Zn ferrites
,”
J. Magn. Magn. Mater.
429
,
129
137
(
2017
).
17.
E.
Ferrara
,
F.
Fiorillo
,
C.
Beatrice
,
S.
Dobák
,
C.
Ragusa
,
A.
Magni
, and
C.
Appino
, “
Characterization and assessment of the wideband magnetic properties of nanocrystalline alloys and soft ferrites
,”
J. Mater. Res.
33
,
2120
2137
(
2018
).
18.
D.
Stoppels
, “
Developments in soft magnetic power ferrites
,”
J. Magn. Magn. Mater.
160
,
323
328
(
1996
).
19.
K.
Sun
,
Z.
Lan
,
Z.
Yu
,
L.
Li
,
X.
Jiang
, and
H.
Ji
, “
Temperature dependence of core losses at high frequencies for MnZn ferrites
,”
Phys. B Condens. Matter
405
,
1018
1021
(
2010
).
20.
M.
LoBue
,
F.
Mazaleyrat
, and
V.
Loyau
, “
Study of magnetic losses in Mn-Zn ferrites under biased and asymmetric excitation waveforms
,”
IEEE Trans. Magn.
46
,
451
454
(
2010
).
21.
O.
de la Barrière
,
C.
Appino
,
F.
Fiorillo
,
C.
Ragusa
,
M.
Lecrivain
,
L.
Rocchino
,
H.
Ben Ahmed
,
M.
Gabsi
,
F.
Mazaleyrat
, and
M.
Lo Bue
, “
Characterization and prediction of magnetic losses in soft magnetic composites under distorted induction waveforms
,”
IEEE Trans. Magn.
49
,
1318
1326
(
2013
).
22.
V.
Loyau
,
G.-Y.
Wang
,
M. L.
LoBue
, and
F.
Mazaleyrat
, “
An analysis of Mn-Zn ferrite microstructure by impedance spectroscopy, scanning transmission electron microscopy and energy dispersion spectrometry characterizations
,”
J. Appl. Phys.
111
,
053928
(
2012
).
23.
F.
Fiorillo
,
C.
Beatrice
,
O.
Bottauscio
, and
E.
Carmi
, “
Eddy current losses in Mn-Zn ferrites
,”
IEEE Trans. Magn.
50
,
6300109
(
2014
).
24.
C.
Beatrice
,
S.
Dobák
,
V.
Tsakaloudi
,
C.
Ragusa
,
F.
Fiorillo
,
L.
Martino
, and
V.
Zaspalis
, “
Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites
,”
AIP Adv.
8
,
047803
(
2018
).
25.
F.
Fiorillo
and
C.
Beatrice
, “
A comprehensive approach to broadband characterization of soft ferrites
,”
Int. J. Appl. Electromagn. Mech.
48
,
283
294
(
2015
).
26.
J. F.
Dillon
, Jr.
and
H. E.
Earl
, Jr.
, “
Domain wall motion and ferromagnetic resonance in a manganese ferrite
,”
J. Appl. Phys.
30
,
202
213
(
1959
).
27.
G.
Bertotti
,
Hysteresis in Magnetism
(
Academic Press
,
San Diego
,
CA
,
1998
), p.
411
.

Supplementary Material

You do not currently have access to this content.