The incorporation of electronic states in the bandgap, with high radiative efficiency, provides a means for optical up/down conversion and for tuning the carrier lifetime of a material. Such intermediate states in highly mismatched alloys have recently received much attention due to their potential for an efficient solar energy conversion. Understanding the carrier dynamics and pathways for the charge transfer of sub-bandgap transitions is critical for understanding energy conversion processes. In this work, time-resolved photoluminescence of ZnTeO is reported, revealing electron relaxation from the conduction band to the intermediate band and the carrier transfer between intermediate states and the conduction band utilizing two time-delayed optical excitations. This work demonstrates the utility of time-resolved techniques for characterizing energy conversion mechanisms in intermediate band materials, and the ability to use intermediate states to intentionally alter carrier lifetimes in materials for applications such as ultrafast scintillation.

1.
J.
Wu
,
W.
Walukiewicz
, and
E. E.
Haller
,
Phys. Rev. B
65
(
23
),
233210
(
2002
).
2.
A.
Luque
and
A.
Martí
,
Phys. Rev. Lett.
78
(
26
),
5014
5017
(
1997
).
3.
A.
Martí
,
E.
Antolín
,
E.
Cánovas
,
N.
López
,
P. G.
Linares
,
A.
Luque
,
C. R.
Stanley
, and
C. D.
Farmer
,
Thin Solid Films
516
(
20
),
6716
6722
(
2008
).
4.
Y.
Okada
,
T.
Morioka
,
K.
Yoshida
,
R.
Oshima
,
Y.
Shoji
,
T.
Inoue
, and
T.
Kita
,
J. Appl. Phys.
109
(
2
),
024301
(
2011
).
5.
A.
Scaccabarozzi
,
S.
Adorno
,
S.
Bietti
,
M.
Acciarri
, and
S.
Sanguinetti
,
Phys. Status Solidi Rapid Res. Lett.
7
(
3
),
173
176
(
2013
).
6.
N.
Ahsan
,
N.
Miyashita
,
M. M.
Islam
,
K. M.
Yu
,
W.
Walukiewicz
, and
Y.
Okada
,
Appl. Phys. Lett.
100
(
17
),
172111
(
2012
).
7.
H.
Jussila
,
P.
Kivisaari
,
J.
Lemettinen
,
T.
Tanaka
, and
M.
Sopanen
,
Phys. Rev. Appl.
3
(
5
),
054007
(
2015
).
8.
A.
Luque
,
A.
Martí
,
E.
Antolín
, and
C.
Tablero
,
Physica B
382
(
1–2
),
320
327
(
2006
).
9.
J. J.
Krich
,
B. I.
Halperin
, and
A.
Aspuru-Guzik
,
J. Appl. Phys.
112
(
1
),
013707
(
2012
).
10.
J. L.
Merz
,
Phys. Rev.
176
(
3
),
961
968
(
1968
).
11.
W.
Wang
,
A.
Lin
,
J. D.
Phillips
, and
W.
Metzger
,
Appl. Phys. Lett.
95
,
261107
(
2009
).
12.
T.
Tanaka
,
T.
Mochinaga
,
K.
Saito
,
Q.
Guo
,
M.
Nishio
,
K. M.
Yu
, and
W.
Walukiewicz
, paper presented at the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, Texas, June 3–8, 2012.
13.
T.
Tanaka
,
K.
Matsuo
,
K.
Saito
,
Q.
Guo
,
T.
Tayagaki
,
K. M.
Yu
, and
W.
Walukiewicz
,
J. Appl. Phys.
125
(
24
),
243109
(
2019
).
14.
Y.-C.
Lin
,
M.-J.
Tasi
,
W.-C.
Chou
,
W.-H.
Chang
,
W.-K.
Chen
,
T.
Tanaka
,
Q.
Guo
, and
M.
Nishio
,
Appl. Phys. Lett.
103
(
26
),
261905
(
2013
).
15.
J.
Li
,
J.
Ye
,
F.
Ren
,
D.
Tang
,
Y.
Yang
,
K.
Tang
,
S.
Gu
,
R.
Zhang
, and
Y.
Zheng
,
Sci. Rep.
7
,
44399
(
2017
).
16.
J. N.
Heyman
,
A. M.
Schwartzberg
,
K. M.
Yu
,
A. V.
Luce
,
O. D.
Dubon
,
Y. J.
Kuang
,
C. W.
Tu
, and
W.
Walukiewicz
,
Phys. Rev. Appl.
7
(
1
),
014016
(
2017
).
17.
E.
Antolín
,
C.
Chen
,
I.
Ramiro
,
J.
Foley
,
E.
López
,
I.
Artacho
,
J.
Hwang
,
A.
Teran
,
E.
Hernández
,
C.
Tablero
,
A.
Martí
,
J. D.
Phillips
, and
A.
Luque
,
IEEE J. Photovoltaics
4
(
4
),
1091
1094
(
2014
).
18.
V. A.
Stoica
,
Y.-M.
Sheu
,
D. A.
Reis
, and
R.
Clarke
,
Opt. Express
16
(
4
),
2322
2335
(
2008
).
19.
C.
Chen
,
J.
Zheng
,
K.
Nguy
,
F.
Naab
, and
J.
Phillips
,
J. Electron. Mater.
43
(
4
),
879
883
(
2014
).
20.
J. D.
Dow
,
R.-D.
Hong
,
S.
Klemm
,
S. Y.
Ren
,
M. H.
Tsai
,
O. F.
Sankey
, and
R. V.
Kasowski
,
Phys. Rev. B
43
(
5
),
4396
4407
(
1991
).
21.
A. S.
Lin
,
W.
Wang
, and
J. D.
Phillips
,
J. Appl. Phys.
105
,
064512
(
2009
).
22.
A.
Lin
and
J.
Phillips
,
IEEE Trans. Electron Devices
56
(
12
),
3168
3174
(
2009
).
23.
A.
Lin
and
J.
Phillips
,
Prog. Photovolt.
22
(
10
),
1062
1069
(
2014
).
You do not currently have access to this content.