CrSi2 alloy presents a strong interest for thermoelectric applications; however, its thermal conductivity is still too high and limits strongly its figure of merit. By combining experiment and modeling, we show that the nanostructuring of CrSi2 leads to a strong decrease in the thermal conductivity without affecting much the electronic transport properties. The thermal conductivity of nanostructured CrSi2 (∼45 nm) has also been determined as a function of the density. We predict that it would be about 5.5 W/mK at RT for a 100% dense sample, i.e., twice smaller than in bulk samples. We also give for the first time, a prediction of the effect of alloying on the thermal conductivity using the Callaway-Klemens model. To consider final applications, it is necessary to also investigate the thermal stability of nanostructured compounds. We show that grain coarsening of nanostructured CrSi2, even if it remains limited, happens above 1073 K and will deserve further attention.

1.
M. I.
Fedorov
and
G. N.
Isachenko
,
Jpn. J. Appl. Phys.
54
,
07JA05
(
2015
).
2.
T.
Dasgupta
,
J.
Etourneau
,
B.
Chevalier
,
S. F.
Matar
, and
A. M.
Umarji
,
J. Appl. Phys.
103
,
113516
(
2008
).
3.
I.
Nishida
and
T.
Sakata
,
J. Phys. Chem. Solids
39
,
499
(
1978
).
4.
D.
Shinoda
,
S.
Asanabe
, and
Y.
Sasaki
,
J. Phys. Soc. Jpn.
19
,
269
(
1964
).
5.
I.
Nishida
,
J. Mater. Sci.
7
,
1119
(
1972
).
6.
T.
Dasgupta
and
A. M.
Umarji
,
J. Alloys Compd.
461
,
292
(
2008
).
7.
P.
Hermet
,
M.
Khalil
,
R.
Viennois
,
M.
Beaudhuin
,
D.
Bourgogne
, and
D.
Ravot
,
RSC Adv.
5
,
19106
(
2015
).
8.
M.
Khalil
, “
Investigation and optimization of semiconducting chromium disilicide based materials for thermoelectric applications
,” Ph.D. thesis (
Univ. Montpellier
, Montpellier,
2015
).
9.
V. K.
Zaitsev
,
M. I.
Fedorov
,
E. A.
Gurieva
,
I. S.
Eremin
,
P. P.
Konstantinov
,
A. Y.
Samunin
, and
M. V.
Vedernikov
,
Phys. Rev. B
74
,
45207
(
2006
).
10.
S.
Karuppaiah
,
M.
Beaudhuin
, and
R.
Viennois
,
J. Solid State Chem.
199
,
90
(
2013
).
11.
S.
Perumal
,
S.
Gorsse
,
U.
Ail
,
M.
Prakasam
,
B.
Chevalier
, and
A. M.
Umarji
,
J. Mater. Sci.
48
,
6018
(
2013
).
12.
M.
Khalil
,
M.
Beaudhuin
,
B.
Villeroy
,
D.
Ravot
, and
R.
Viennois
,
J. Alloys Compd.
662
,
150
(
2016
).
13.
D. M.
Rowe
,
Thermoelectric Handbook—Macro to Nano
(
CRC Press
,
2006
).
14.
B. K.
Voronov
,
L. D.
Dudkin
, and
N. N.
Trusova
,
Sov. Powder Metall. Met. Ceram.
13
,
962
(
1974
).
15.
J.
Rodriguez-Carvajal
, Satellite Meeting on Powder Diffraction of the XV Congress IUCr 127, Toulouse, France (
Congress International Union of Crystallography
,
Toulouse, France
,
1990
).
16.
H.
Chen
,
Y.
Du
, and
J. C.
Schuster
,
Calphad
33
,
211
(
2009
).
17.
E.
Alleno
,
D.
Berardan
,
C.
Byl
,
C.
Candolfi
,
R.
Daou
,
R.
Decourt
,
E.
Guilmeau
,
S.
Hebert
,
J.
Hejtmanek
,
B.
Lenoir
,
P.
Masschelein
,
V.
Ohorodnichuk
,
M.
Pollet
,
S.
Populoh
,
D.
Ravot
,
O.
Rouleau
, and
M.
Soulier
,
Rev. Sci. Instrum.
86
,
011301
(
2015
).
18.
O. M.
Lemine
,
Superlattices Microstruct.
45
,
576
(
2009
).
19.
R.
Yazdani-rad
,
S. A.
Mirvakili
, and
M.
Zakeri
,
J. Alloys Compd.
489
,
379
(
2010
).
20.
A.
Mohamad
,
Y.
Ohishi
,
Y.
Miyazaki
,
H.
Muta
,
K.
Kurosaki
, and
S.
Yamanaka
,
Mater. Trans.
57
,
1059
(
2016
).
21.
22.
C. T.
Walker
and
R. O.
Pohl
,
Phys. Rev.
131
,
1433
(
1963
).
23.
P. G.
Klemens
,
Solid State Physics
(
Academic Press Inc.
,
NY
,
1958
), Vol. 7.
24.
K. S.
Dubey
and
R. H.
Misho
,
Phys. Status Solidi
84
,
69
(
1977
).
25.
M.
Nakamura
,
Metall. Mater. Trans. A
25
,
331
(
1994
).

Supplementary Material

You do not currently have access to this content.