In this work, we used a combination of photoluminescence (PL), high resolution X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) techniques to investigate material quality and structural properties of MBE-grown InGaAsBi samples (with and without an InGaAs cap layer) with targeted bismuth composition in the 3%–4% range. XRD data showed that the InGaAsBi layers are more homogeneous in the uncapped samples. For the capped samples, the growth of the InGaAs capped layer at higher temperature affects the quality of the InGaAsBi layer and bismuth distribution in the growth direction. Low-temperature PL exhibited multiple emission peaks; the peak energies, widths, and relative intensities were used for comparative analysis of the data in line with the XRD and RBS results. RBS data at a random orientation together with channeled measurements allowed both an estimation of the bismuth composition and analysis of the structural properties. The RBS channeling showed evidence of higher strain due to possible antisite defects in the capped samples grown at a higher temperature. It is also suggested that the growth of the capped layer at high temperature causes deterioration of the bismuth-layer quality. The RBS analysis demonstrated evidence of a reduction of homogeneity of uncapped InGaAsBi layers with increasing bismuth concentration. The uncapped higher bismuth concentration sample showed less defined channeling dips suggesting poorer crystal quality and clustering of bismuth on the sample surface.

1.
K.
Alberi
,
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
O. D.
Dubon
,
S. P.
Watkins
,
C. X.
Wang
,
X.
Liu
,
Y.-J.
Cho
, and
J.
Furdyna
, “
Valence-band anticrossing in mismatched III-V semiconductor alloys
,”
Phys. Rev. B
75
,
045203
(
2007
).
2.
J. P.
Petropoulos
,
Y.
Zhong
, and
J. M. O.
Zide
, “
Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material
,”
Appl. Phys. Lett.
99
,
031110
(
2011
).
3.
Z.
Batool
,
K.
Hild
,
T. J. C.
Hosea
,
X. F.
Lu
,
T.
Tiedje
, and
S. J.
Sweeney
, “
The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing
,”
J. Appl. Phys.
111
(
11
),
113108
(
2012
).
4.
S. J.
Sweeney
and
S. R.
Jin
, “
Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared
,”
J. Appl. Phys.
113
,
043110
(
2013
).
5.
I. P.
Marko
,
Z.
Batool
,
K.
Hild
,
S. R.
Jin
,
N.
Hossain
,
T. J. C.
Hosea
,
J. P.
Petropoulos
,
Y.
Zhong
,
P. B.
Dongmo
,
J. M. O.
Zide
, and
S. J.
Sweeney
, “
Temperature and Bi-concentration dependence of the bandgap and spin-orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applications
,”
Appl. Phys. Lett.
101
(
22
),
221108
(
2012
).
6.
S. R.
Jin
and
S. J.
Sweeney
, “
InGaAsBi alloys on InP for efficient near- and mid-infrared light emitting devices
,”
J. Appl. Phys.
114
,
213103
(
2013
).
7.
M.
Usman
,
C. A.
Broderick
,
A.
Lindsay
, and
E. P.
O'Reilly
, “
Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs
,”
Phys. Rev. B
84
,
245202
(
2011
).
8.
Y.
Gu
,
Y. G.
Zhanga
,
X. Y.
Chen
,
Y. J.
Ma
,
S. P.
Xi
,
B.
Du
, and
L.
Hsby
, “
Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP
,”
Appl. Phys. Lett.
108
,
032102
(
2016
).
9.
L.
Wang
,
L.
Zhang
,
L.
Yue
,
D.
Liang
,
X.
Chen
,
Y.
Li
,
P.
Lu
,
J.
Shao
, and
S.
Wang
, “
Novel dilute bismide, epitaxy, physical properties and device application
,”
Crystals
7
(
3
),
63
(
2017
).
10.
I. P.
Marko
,
S. R.
Jin
,
K.
Hild
,
Z.
Batool
,
Z. L.
Bushell
,
P.
Ludewig
,
W.
Stolz
,
K.
Volz
,
R.
Butkutė
,
V.
Pačebutas
,
A.
Geizutis
,
A.
Krotkus
, and
S. J.
Sweeney
, “
Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near- infrared emitting quantum well lasers
,”
Semicond. Sci. Technol.
30
,
094008
(
2015
).
11.
I. P.
Marko
and
S. J.
Sweeney
, “
Progress toward III–V bismide alloys for near- and midinfrared laser diodes
,”
IEEE J. Sel. Top. Quantum Electron.
23
(
6
),
1501512
(
2017
).
12.
X.
Wu
,
W.
Pan
,
Z.
Zhang
,
Y.
Li
,
C.
Cao
,
J.
Liu
,
L.
Zhang
,
Y.
Song
,
H.
Ou
, and
S.
Wang
, “
1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy
,”
ACS Photonics
4
(
6
),
1322
1326
(
2017
).
13.
I. P.
Marko
,
P.
Ludewig
,
Z. L.
Bushell
,
S. R.
Jin
,
K.
Hild
,
Z.
Batool
,
S.
Reinhard
,
L.
Nattermann
,
W.
Stolz
,
K.
Volz
, and
S. J.
Sweeney
, “
Physical properties and optimization of GaBiAs/(Al)GaAs based near-infrared laser diodes grown by MOVPE with up to 4.4% Bi
,”
J. Phys. D Appl. Phys.
47
,
345103
(
2014
).
14.
I. P.
Marko
and
S. J.
Sweeney
, “
The influence of inhomogeneities and defects on novel quantum well and quantum dot based infrared-emitting semiconductor lasers
,”
Semicond. Sci. Technol.
33
(
113002
),
11
(
2018
).
15.
T. B. O.
Rockett
 et al, “
Influence of growth conditions on the structural and opto-electronic quality of GaAsBi
,”
J. Cryst. Growth
477
,
139
143
(
2017
).
16.
R. B.
Lewis
,
M.
Masnadi-Shirazi
, and
T.
Tiedje
, “
Growth of high Bi concentration GaAs1-xBix by molecular beam epitaxy
,”
Appl. Phys. Lett.
101
(
8
),
1
5
(
2012
).
17.
A.
Janotti
,
S. H.
Wei
, and
S. B.
Zhang
, “
Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs
,”
Phys. Rev. B Condens. Matter Mater. Phys.
65
(
11
),
1
5
(
2002
).
18.
D. F.
Reyes
,
F.
Bastiman
,
C. J.
Hunter
,
D. L.
Sales
,
A. M.
Sanchez
,
J. P. R.
David
, and
D.
González
, “
Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures
,”
Nanoscale Res. Lett.
9
,
23
(
2014
).
19.
Ł
Gelczuk
,
J.
Kopaczek
,
T. B. O.
Rockett
,
R. D.
Richards
, and
R.
Kudrawiec
, “
Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties
,”
Sci. Rep.
7
,
12824
(
2017
).
20.
R.
Butkutė
,
G.
Niaura
,
E.
Pozingytė
,
B.
Čechavičius
,
A.
Selskis
,
M.
Skapas
,
V.
Karpus
, and
A.
Krotkus
, “
Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells
,”
Nanoscale Res. Lett.
12
,
436
(
2017
).
21.
A.
Simon
,
C.
Jeynes
,
R. P.
Webb
,
R.
Finnis
,
Z.
Tabatabian
,
P. J.
Sellin
,
M. B. H.
Breese
,
D. F.
Fellows
,
R.
van den Broek
, and
R. M.
Gwilliam
, “
The new surrey ion beam analysis facility
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
219
,
405
409
(
2004
).
22.
M.
Mayer
, “
Lectures given at the Workshop on Nuclear Data for Science and Technology: Materials Analysis
,” in
Rutherford Backscattering Spectrometry (RBS)
(
Trieste
,
2003
), pp.
19
30
.
23.
G.
Feng
,
K.
Oe
, and
M.
Yoshimoto
, “
Bismuth containing III-V quaternary alloy InGaAsBi grown by MBE
,”
Phys. Status Solidi A
203
(
11
),
2670
2673
(
2006
).
24.
M.
Mayer
, “
SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA
,”
AIP Conf. Proc.
475
,
541
(
1999
).
25.
S.
Hashimoto
 et al, “
Steering effect at a strained NiSi2/Si (001) interface
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
13
,
45
50
(
1986
).
26.
A.
Vantomme
, “
50 years of ion channeling in materials science
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
371
,
12
26
(
2016
).
27.
K.
Lorenz
 et al, “
Anomalous ion channelling in AlInN/GaN bilayers: Determination of the strain state
,”
Phys. Rev. Lett.
97
,
085501
(
2006
).
28.
C.
Lu
 et al, “
Direct observation of defect range and evolution in Ion-irradiated single crystalline Ni and Ni binary alloys
,”
Sci. Rep.
6
,
19994
(
2016
).
29.
S.
Zhang
,
K.
Nordlund
,
F.
Djurabekova
,
Y.
Zhang
,
G.
Velisa
, and
T. S.
Wang
, “
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
,”
Phys. Rev. E
94
,
043319
(
2016
).
30.
M. A.
Rana
, “
Ion channelling studies of defect formation in GaN and related materials
,”
Ph.D. thesis
(
Department of Physics, National University of Singapore
,
2005
).
31.
A.
Turos
,
L.
Nowicki
, and
A.
Stonert
, “Ion channeling study of defects in multicomponent semiconductor compounds” (
International Atomic Energy Agency (INIS)
,
Vienna
,
2002
), Vol. 33, pp.
83
96
, INIS No. 32, ISSN 1011-4289, Worldcat; June 2002.
32.
J. I.
Landman
, “
Antisite-related defects in GaAs grown at low temperatures
,”
Phys. Rev. Lett.
74
(
20
)
4007
4010
(
1995
).
33.
D.
Dagnelund
,
J.
Puustinen
,
M.
Guina
,
W. M.
Chen
, and
I. A.
Buyanova
, “
Identification of an isolated arsenic antisite defect in GaAsBi
,”
Appl. Phys. Lett.
104
,
052110
(
2014
).
34.
J.
Puustinen
,
M.
Wu
,
E.
Luna
,
A.
Schramm
,
P.
Laukkanen
,
M.
Laitinen
,
T.
Sajavaara
, and
M.
Guina
, “
Variation of lattice constant and cluster formation in GaAsBi
,”
J. Appl. Phys.
114
,
243504
(
2013
).
35.
M.
Wu
, “
Observation of atomic ordering of triple period A and -B type in GaAsBi
,”
Appl. Phys. Lett.
105
,
041602
(
2014
).
36.
E.
Luna
, “
Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1−xBix epilayers
,”
J. Appl. Phys.
117
,
185302
(
2015
).
37.
Y.
Zhong
,
P. B.
Dongmo
,
J. P.
Petropoulos
, and
J. M. O.
Zide
, “
Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y
,”
Appl. Phys. Lett.
100
,
112110
(
2012
).
38.
E.
Sterzer
,
N.
Knaub
,
P.
Ludewig
,
R.
Straubinger
,
A.
Beyer
, and
K.
Volz
, “
Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs
,”
J. Cryst. Growth
408
,
71
77
(
2014
).
You do not currently have access to this content.