In order to study the effect of Fe cation substitution on the local structure, defect formation, and hyperfine interactions in ZnO, Mössbauer spectroscopy measurements of the microwave processed Zn1xFexO (x=0.05, 0.10, 0.15, and 0.20) nanoparticles, together with ab initio calculations, were performed. Complementary information on the distribution of particle size and morphology, as well as magnetic properties, were obtained by X-ray diffraction, transmission electron microscopy, and squid-magnetometry. The selected model for analyzing the Mössbauer spectra of our samples is a distribution of quadrupole splittings. The fitting model with two Lorentz doublets was rejected due to its failure to include larger doublets. The Fe3+ ions do not yield magnetic ordering in the samples at room temperature. The results from first-principles calculations confirm that the major component of the Mössbauer spectra corresponds to the Fe-alloyed ZnO with Zn vacancy in the next nearest neighbor environment. The magnetic measurements are consistent with the description of the distribution of iron ions over the randomly formed clusters in the ZnO host lattice. While at room temperature all the samples are paramagnetic, magnetic interactions cause a transition into a cluster spin-glass state at low temperatures.

1.
A.
Kołodziejczak-Radzimska
and
T.
Jesionowski
,
Materials
7
,
2833
(
2014
).
2.
A.
Djurišić
,
A.
Ng
, and
X.
Chen
,
Prog. Quant. Electron.
34
,
191
(
2010
).
3.
S.
García-Rodríguez
, “Alternative metal oxide photocatalysts,” in Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, Green Energy and Technology, edited by J. Coronado, F. Fresno, M. Hernández-Alonso, and R. Portela (Springer, London, 2013), Vol. 71, Chap. 6, pp. 103–108.
4.
L.
Xu
and
X.
Li
,
J. Cryst. Growth
312
,
851
(
2010
).
5.
M.
Venkatesan
,
C. B.
Fitzgerald
,
J. G.
Lunney
, and
J. M. D.
Coey
,
Phys. Rev. Lett.
93
,
177206
(
2004
).
6.
A. K.
Yadav
,
S. M.
Haque
,
S.
Tripathi
,
D.
Shukla
,
M. A.
Ahmed
,
D. M.
Phase
,
S.
Bandyopadhyay
,
S. N.
Jha
, and
D.
Bhattacharyya
,
RSC Adv.
6
,
74982
(
2016
).
7.
S.
Katba
,
S.
Jethva
,
M.
Udeshi
,
P.
Trivedi
,
M.
Vagadia
,
D.
Shukla
,
R.
Choudhary
,
D.
Phase
, and
D.
Kuberkar
,
Appl. Surf. Sci.
423
,
100
(
2017
).
8.
D.
Karmakar
,
S. K.
Mandal
,
R. M.
Kadam
,
P. L.
Paulose
,
A. K.
Rajarajan
,
T. K.
Nath
,
A. K.
Das
,
I.
Dasgupta
, and
G. P.
Das
,
Phys. Rev. B
75
,
144404
(
2007
).
9.
H.
Liu
,
J.
Yang
,
Y.
Zhang
,
Y.
Wang
, and
M.
Wei
,
Mater. Chem. Phys.
112
,
1021
(
2008
).
10.
H.
Liu
,
J.
Yang
,
Y.
Zhang
,
L.
Yang
,
M.
Wei
, and
X.
Ding
,
J. Phys. Condens. Matter
21
,
145803
(
2009
).
11.
A.
Mishra
and
D.
Das
,
Mater. Sci. Eng. B
171
,
5
(
2010
).
12.
R.
Saleh
,
S. P.
Prakoso
, and
A.
Fishli
,
J. Magn. Magn. Mater.
324
,
665
(
2012
).
13.
J. J.
Beltrán
,
C. A.
Barrero
, and
A.
Punnoose
,
Phys. Chem. Chem. Phys.
17
,
15284
(
2015
).
14.
S.
Kumar
,
Y. J.
Kim
,
B. H.
Koo
,
S. K.
Sharma
,
J. M.
Vargas
,
M.
Knobel
,
S.
Gautam
,
K. H.
Chae
,
D. K.
Kim
,
Y. K.
Kim
, and
C. G.
Lee
,
J. Appl. Phys.
105
,
07C520
(
2009
).
15.
M. V.
Limaye
,
S. B.
Singh
,
R.
Das
,
P.
Poddar
, and
S. K.
Kulkarni
,
J. Solid State Chem.
184
,
391
(
2011
).
16.
I.
Lorite
,
Y.
Kumar
,
P.
Esquinazi
,
S.
Friedländer
,
A.
Pöppl
,
T.
Michalsky
,
J.
Meijer
,
M.
Grundmann
,
T.
Meyer
, and
I.
Estrela-Lopis
,
Appl. Phys. Lett.
109
,
012401
(
2016
).
17.
G. Y.
Ahn
,
S.-I.
Park
,
I.-B.
Shim
, and
C. S.
Kim
,
J. Magn. Magn. Mater.
282
,
166
(
2004
), International Symposium on Advanced Magnetic Technologies.
18.
A.
Samariya
,
R.
Singhal
,
S.
Kumar
,
Y.
Xing
,
M.
Alzamora
,
S.
Dolia
,
U.
Deshpande
,
T.
Shripathi
, and
E. B.
Saitovitch
,
Mater. Chem. Phys.
123
,
678
(
2010
).
19.
M.
Carvalho
,
L.
Ferreira
,
R.
Borges
, and
M.
Godinho
,
J. Solid State Chem.
185
,
160
(
2012
).
20.
R. W.
Cheary
and
A.
Coelho
,
J. Appl. Crystallogr.
25
,
109
(
1992
).
21.
W.
Rasband
, “ImageJ,” U.S. National Institutes of Health, Bethesda, Maryland, USA (1997–2012).
22.
J. A.
Mydosh
,
Spin Glasses: An Experimental Introduction
(
Taylor & Francis
,
London
,
1993
).
23.
J. M. D.
Coey
,
A. P.
Douvalis
,
C. B.
Fitzgerald
, and
M.
Venkatesan
,
Appl. Phys. Lett.
84
,
1332
(
2004
).
24.
R.
Brand
,
WinNormos Mössbauer Fitting Program
(
Universität Duisburg
,
Duisburg
,
2008
).
25.
R.
Brand
and
G. L.
Caër
,
Nucl. Instrum. Methods B
34
,
272
(
1988
).
26.
E.
Murad
and
J.
Cashion
,
Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization
(
Springer
,
New York
,
2004
).
27.
K.
Sato
and
H.
Katayama-Yoshida
,
Jpn. J. Appl. Phys.
40
,
L334
(
2001
).
28.
R.
Mantovan
,
H. P.
Gunnlaugsson
,
K.
Johnston
,
H.
Masenda
,
T. E.
Mølholt
,
D.
Naidoo
,
M.
Ncube
,
S.
Shayestehaminzadeh
,
K.
Bharuth-Ram
,
M.
Fanciulli
,
H. P.
Gislason
,
G.
Langouche
,
S.
Ólafsson
,
L. M. C.
Pereira
,
U.
Wahl
,
P.
Torelli
, and
G.
Weyer
,
Adv. Electron. Mater.
1
,
1400039
(
2015
).
29.
H. P.
Gunnlaugsson
,
K.
Johnston
,
T. E.
Mølholt
,
G.
Weyer
,
R.
Mantovan
,
H.
Masenda
,
D.
Naidoo
,
S.
Ölafsson
,
K.
Bharuth-Ram
,
H. P.
Gíslason
,
G.
Langouche
,
M. B.
Madsen
, and
the ISOLDE Collaboration
,
Appl. Phys. Lett.
100
,
042109
(
2012
).
30.
E.
Rita
,
U.
Wahl
,
J. G.
Correia
,
E.
Alves
, and
J. C.
Soares
,
Appl. Phys. Lett.
85
,
4899
(
2004
).
31.
L. M. C.
Pereira
,
U.
Wahl
,
J. G.
Correira
,
M. J. V.
Bael
,
K.
Temst
,
A.
Vantomme
, and
J. P.
Araújo
,
J. Phys. Condens. Matter
25
,
416001
(
2013
).
32.
G. F.
Goya
and
E. R.
Leite
,
J. Phys. Condens. Matter
15
,
641
(
2003
).
33.
Z. Ž.
Lazarević
,
Č.
Jovalekić
,
V. N.
Ivanovski
,
A.
Rečnik
,
A.
Milutinović
,
B.
Cekić
, and
N. Ž.
Romčević
,
J. Phys. Chem. Solids
75
,
869
(
2014
).
34.
S. K.
Mandal
,
A. K.
Das
,
T. K.
Nath
, and
D.
Karmakar
,
Appl. Phys. Lett.
89
,
144105
(
2006
).
35.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
, “Wien2k, an augmented plane wave + local orbitals program for calculating crystal properties,” Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2.
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
A.
Debernardi
and
M.
Fanciulli
,
Physica B
401
,
451
(
2007
).
38.
V.
Luaña
, “Tessel version 2.1,” Quantum Chemistry Group, Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain, 1996–2003.
39.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
40.
P.
Blaha
,
J. Phys. Conf. Ser.
217
,
012009
(
2010
).
41.
P.
Blaha
,
K.
Schwarz
, and
P.
Herzig
,
Phys. Rev. Lett.
54
,
1192
(
1985
).
42.
K.
Schwarz
,
C.
Ambrosch-Draxl
, and
P.
Blaha
,
Phys. Rev. B
42
,
2051
(
1990
).
43.
Yi.-L.
Chen
and
D.-P.
Yang
,
Mössbauer Effect in Lattice Dynamics: Experimental Techniques and Applications
(
Wiley
,
Weinheim
,
2007
), pp. 9–41.
44.
P.
Dufek
,
P.
Blaha
, and
K.
Schwarz
,
Phys. Rev. Lett.
75
,
3545
(
1995
).
45.
T.
Korhonen
,
A.
Settels
,
N.
Papanikolaou
,
R.
Zeller
, and
P. H.
Dederichs
,
Phys. Rev. B
62
,
452
(
2000
).
46.
S.
Cottenier
and
H.
Haas
,
Phys. Rev. B
62
,
461
(
2000
).
47.
L. A.
Errico
,
G.
Fabricius
, and
M.
Rentería
,
Phys. Status Solidi B
241
,
2394
(
2004
).
48.
R.
Vidya
,
P.
Ravindran
,
H.
Fjellvåg
,
B. G.
Svensson
,
E.
Monakhov
,
M.
Ganchenkova
, and
R. M.
Nieminen
,
Phys. Rev. B
83
,
045206
(
2011
).
49.
G.
Weyer
,
H. P.
Gunnlaugsson
,
R.
Mantovan
,
M.
Fanciulli
,
D.
Naidoo
,
K.
Bharuth-Ram
, and
T.
Agne
,
J. Appl. Phys.
102
,
113915
(
2007
).
50.
T.
Mølholt
,
R.
Mantovan
,
H.
Gunnlaugsson
,
K.
Bharuth-Ram
,
M.
Fanciulli
,
H.
Gíslason
,
K.
Johnston
,
Y.
Kobayashi
,
G.
Langouche
,
H.
Masenda
,
D.
Naidoo
,
S.
Ólafsson
,
R.
Sielemann
, and
G.
Weyer
,
Physica B
404
,
4820
(
2009
).
51.
H. P.
Gunnlaugsson
,
T. E.
Mølholt
,
R.
Mantovan
,
H.
Masenda
,
D.
Naidoo
,
W. B.
Dlamini
,
R.
Sielemann
,
K.
Bharuth-Ram
,
G.
Weyer
,
K.
Johnston
,
G.
Langouche
,
S.
Ólafsson
,
H. P.
Gíslason
,
Y.
Kobayashi
,
Y.
Yoshida
, and
M.
Fanciulli
,
Appl. Phys. Lett.
97
,
142501
(
2010
).
52.
R.
Mantovan
,
H. P.
Gunnlaugsson
,
D.
Naidoo
,
S.
Ólafsson
,
K.
Johnston
,
H.
Masenda
,
T. E.
Mølholt
,
K.
Bharuth-Ram
,
M.
Fanciulli
,
H. P.
Gislason
,
G.
Langouche
,
R.
Sielemann
, and
G.
Weyer
, and
T. I. Collaboration
,
J. Phys. Condens. Matter
24
,
485801
(
2012
).
53.
T. E.
Mølholt
,
H. P.
Gunnlaugsson
,
K.
Johnston
,
R.
Mantovan
,
H.
Masenda
,
D.
Naidoo
,
S.
Ólafsson
,
K.
Bharuth-Ram
,
H. P.
Gislason
,
G.
Langouche
,
R.
Sielemann
,
G.
Weyer
, and
T. I. Collaboration
,
Phys. Scr.
T148
,
014006
(
2012
).
54.
A.
Janotti
and
C. G.
Van de Walle
,
Phys. Rev. B
76
,
165202
(
2007
).
55.
T.
Kataoka
,
M.
Kobayashi
,
Y.
Sakamoto
,
G. S.
Song
,
A.
Fujimori
,
F.-H.
Chang
,
H.-J.
Lin
,
D. J.
Huang
,
C. T.
Chen
,
T.
Ohkochi
,
Y.
Takeda
,
T.
Okane
,
Y.
Saitoh
,
H.
Yamagami
,
A.
Tanaka
,
S. K.
Mandal
,
T. K.
Nath
,
D.
Karmakar
, and
I.
Dasgupta
,
J. Appl. Phys.
107
,
033718
(
2010
).
56.
Y.
Abreu
,
C.
Cruz
,
I.
Piñera
,
A.
Leyva
,
A.
Cabal
, and
P. V.
Espen
,
Solid State Commun.
185
,
25
(
2014
).
57.
C.
Schäfer
,
W.
Potzel
,
W.
Adlassnig
,
P.
Pöttig
,
E.
Ikonen
, and
G. M.
Kalvius
,
Phys. Rev. B
37
,
7247
(
1988
).
58.
N. S.
Laulainen
and
M. N.
McDermott
,
Phys. Rev.
177
,
1606
(
1969
).
You do not currently have access to this content.