In this work, the feasibility of a monolayer Be2C as the anode material for lithium-ion battery (LiB) was investigated using the density functional theory. Our study reveals that the adsorption of Li atoms changes the electronic conductivity of a monolayer Be2C from semiconducting to metallic. This resulted in a low Li diffusion barrier of 0.11 eV, which is highly needed for the fast charge and discharge processes of the LiB. Additionally, the predicted open-circuit voltage was 0.33 V, and the calculated maximum theoretical capacity was impressively high (1785 mAh/g). Our findings suggest that the monolayer Be2C is a promising anode material for high-performance LiB.

1.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
, “
Electrical energy storage for the grid: A battery of choices
,”
Science
334
,
928
935
(
2011
).
2.
A.
Doron
,
Z.
Ella
,
C.
Yaron
, and
T.
Hanan
, “
A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
,”
Solid State Ion.
148
,
405
416
(
2002
).
3.
M.
Yoshio
,
H.
Wang
, and
K.
Fukuda
, “
Spherical carbon-coated natural graphite as a lithium-ion battery-anode material
,”
Angew. Chem. Int. Ed.
42
,
4203
4206
(
2003
).
4.
G.
Jeong
,
Y.-U.
Kim
,
H.
Kim
,
Y.-J.
Kim
, and
H.-J.
Sohn
, “
Prospective materials and applications for Li secondary batteries
,”
Energy Environ. Sci.
4
,
1986
2002
(
2011
).
5.
M. H.
Park
,
M. G.
Kim
,
J.
Joo
,
K.
Kim
,
J.
Kim
,
S.
Ahn
,
Y.
Cui
, and
J.
Cho
, “
Silicon nanotube battery anodes
,”
Nano Lett.
9
,
3844
3847
(
2009
).
6.
T.-L.
Chan
and
J. R.
Chelikowsky
, “
Controlling diffusion of lithium in silicon nanostructures
,”
Nano Lett.
10
,
821
825
(
2010
).
7.
J.
Sun
,
G.
Zheng
,
H.-W.
Lee
,
N.
Liu
,
H.
Wang
,
H.
Yao
,
W.
Yang
, and
Y.
Cui
, “
Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes
,”
Nano Lett.
14
,
4573
4580
(
2014
).
8.
M. C.
Stan
,
J.
von Zamory
,
S.
Passerini
,
T.
Nilges
, and
M.
Winter
, “
Puzzling out the origin of the electrochemical activity of black phosphorous as a negative electrode material for lithium-ion batteries
,”
J. Mater. Chem. A
1
,
5293
5300
(
2013
).
9.
W.
Ai
,
J.
Jiang
,
J.
Zhu
,
Z.
Fan
,
Y.
Wang
,
H.
Zhang
,
W.
Huang
, and
T.
Yu
, “
Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion battery
,”
Adv. Energy Mater.
5
,
1500559
(
2015
).
10.
O.
Mashtalir
,
M.
Naguib
,
V. N.
Mochalin
,
Y.
Dall’Agnese
,
M.
Heon
,
M. W.
Barsoum
, and
Y.
Gogotsi
, “
Intercalation and delamination of layered carbides and carbonitrides
,”
Nat. Commun.
4
,
1716
(
2013
).
11.
H.
Hwang
,
H.
Kim
, and
J.
Cho
, “
MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
,”
Nano Lett.
11
,
4826
4830
(
2011
).
12.
G. A.
Tritsaris
,
E.
Kaxiras
,
S.
Meng
, and
E.
Wang
, “
Adsorption and diffusion of lithium on layered silicon for Li-ion storage
,”
Nano Lett.
13
,
2258
2263
(
2013
).
13.
S.
Zhao
,
W.
Kang
, and
J.
Xue
, “
The potential application of phosphorene as an anode material in Li-ion batteries
,”
J. Mater. Chem. A
2
,
19046
19052
(
2014
).
14.
B.
Mortazavi
,
A.
Dianat
,
G.
Cuniberti
, and
T.
Rabczuk
, “
Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation
,”
Electrochim. Acta
213
,
865
870
(
2016
).
15.
H. R.
Jiang
,
Z.
Lu
,
M.
Wu
,
F.
Ciucci
, and
T. S.
Zhao
, “
Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries
,”
Nano Energy
23
,
97
104
(
2016
).
16.
Y.
Jing
,
Z.
Zhou
,
C. R.
Cabrera
, and
Z.
Chen
, “
Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries
,”
J. Phys. Chem. C
117
,
25409
25413
(
2013
).
17.
D.
Er
,
J.
Li
,
M.
Naguib
,
Y.
Gogotsi
, and
V. B.
Shenoy
, “
Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries
,”
ACS Appl. Mater. Interfaces
6
,
11173
11179
(
2014
).
18.
S.
Karmakar
,
C.
Chowdhury
, and
A.
Datta
, “
Two-dimensional group IV monochalcogenides: Anode materials for Li-ion batteries
,”
J. Phys. Chem. C
120
,
14522
14530
(
2016
).
19.
Q.
Sun
,
Y.
Dai
,
Y.
Ma
,
T.
Jing
,
W.
Wei
, and
B.
Huang
, “
Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries
,”
J. Phys. Chem. Lett.
7
,
937
943
(
2016
).
20.
X.
Zhang
,
Z.
Yu
,
S.-S.
Wang
,
S.
Guan
,
H. Y.
Yang
,
Y.
Yao
, and
S. A.
Yang
, “
Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries
,”
J. Mater. Chem. A
4
,
15224
15231
(
2016
).
21.
X.
Zhang
,
L.
Jin
,
X.
Dai
,
G.
Chen
, and
G.
Liu
, “
Two-dimensional GaN: An excellent electrode material providing fast ion diffusion and high storage capacity for Li-ion and Na-ion batteries
,”
ACS Appl. Mater. Interfaces
10
(
45
),
38978
38984
(
2018
).
22.
Y.
Li
,
Y.
Liao
, and
Z.
Chen
, “
Be2C monolayer with quasi-planar hexacoordinate carbons: A global minimum structure
,”
Angew. Chem. Int. Ed.
53
,
7248
7252
(
2014
).
23.
M.
Naseri
,
J.
Jalilian
,
F.
Parandin
, and
K.
Salehi
, “
A new stable polycrystalline Be2C monolayer: A direct semiconductor with hexa-coordinate carbons
,”
Phys. Lett. A
382
,
2144
2148
(
2018
).
24.
P.
Giannozzi
 et al., “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys. Condens. Matter
21
,
395502
(
2009
).
25.
P.
Giannozzi
 et al., “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys. Condens. Matter
29
,
465901
(
2017
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
(
2006
).
28.
G.
Henkelman
and
H.
Jósson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
29.
A.
Kokalj
, “
Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
,”
Comput. Mater. Sci.
28
,
155
168
(
2003
).
30.
Q.
Pang
,
C.-L.
Zhang
,
L.
Li
,
Z.-Q.
Fu
,
X.-M.
Wei
, and
Y.-L.
Song
, “
Adsorption of alkali metal atoms on germanene: A first-principles study
,”
Appl. Surf. Sci.
314
,
15
20
(
2014
).
31.
J.
Khanifaev
,
R.
Peköz
,
M.
Konuk
, and
E.
Durgun
, “
The interaction of halogen atoms and molecules with borophene
,”
Phys. Chem. Chem. Phys.
19
,
28963
28969
(
2017
).
32.
S.
Jana
,
S.
Thomas
,
C. H.
Lee
,
B.
Jun
, and
S. U.
Lee
, “
B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries
,”
J. Mater. Chem. A
7
,
12706
12712
(
2019
).
33.
H. R.
Jiang
,
W.
Shyy
,
M.
Liu
,
L.
Wei
,
M. C.
Wu
, and
T. S.
Zhao
, “
Boron phosphide monolayer as a potential anode material for alkali metal-based batteries
,”
J. Mater. Chem. A.
5
,
672
679
(
2017
).
34.
F.
Li
,
Y.
Qu
, and
M.
Zhao
, “
Germanium sulfide nanosheet: A universal anode material for alkali metal ion batteries
,”
J. Mater. Chem. A
4
,
8905
8912
(
2016
).
35.
X.
Lv
,
W.
Wei
,
Q.
Sun
,
B.
Huang
, and
Y.
Dai
, “
A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries
,”
J. Phys. D Appl. Phys.
50
,
235501
(
2017
).
36.
J.
Hu
,
B.
Xu
,
C.
Ouyang
,
Y.
Zhang
, and
S. A.
Yang
, “
Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first principles calculations
,”
RSC Adv.
6
,
27467
27474
(
2016
).
37.
M. K.
Aydinol
,
A. F.
Kohan
,
G.
Ceder
,
K.
Cho
, and
J.
Joannopoulos
, “
Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
,”
Phys. Rev. B
56
,
1354
1365
(
1997
).
38.
E.
Lee
and
K. A.
Persson
, “
Li absorption and intercalation in single layer graphene and few layer graphene by first principles
,”
Nano Lett.
12
,
4624
4628
(
2012
).
39.
E.
Pollak
,
B.
Geng
,
K.-J.
Jeon
,
I. T.
Lucas
,
T. J.
Richardson
,
F.
Wang
, and
R.
Kostecki
, “
The interaction of Li+ with single-layer and few-layer graphene
,”
Nano Lett.
10
,
3386
3388
(
2010
).
40.
X.
Fan
,
W. T.
Zheng
,
J.-L.
Kuo
, and
D. J.
Singh
, “
Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries
,”
ACS Appl. Mater. Interfaces
5
,
7793
7797
(
2013
).
41.
S. S.
Zhang
and
T. R.
Jow
, “
Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries
,”
J. Power Sources
109
,
422
426
(
2002
).
42.
H.
Zheng
,
K.
Jiang
,
T.
Abe
, and
Z.
Ogumi
, “
Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes
,”
Carbon
44
,
203
210
(
2006
).
43.
Z.
Yang
,
D.
Choi
,
S.
Kerisit
,
K. M.
Rosso
,
D.
Wang
,
J.
Zhang
,
G.
Graff
, and
J.
Liu
, “
Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review
,”
J. Power Sources
192
,
588
598
(
2009
).

Supplementary Material

You do not currently have access to this content.