In this work, the feasibility of a monolayer Be2C as the anode material for lithium-ion battery (LiB) was investigated using the density functional theory. Our study reveals that the adsorption of Li atoms changes the electronic conductivity of a monolayer Be2C from semiconducting to metallic. This resulted in a low Li diffusion barrier of 0.11 eV, which is highly needed for the fast charge and discharge processes of the LiB. Additionally, the predicted open-circuit voltage was 0.33 V, and the calculated maximum theoretical capacity was impressively high (1785 mAh/g). Our findings suggest that the monolayer Be2C is a promising anode material for high-performance LiB.
REFERENCES
1.
B.
Dunn
, H.
Kamath
, and J.-M.
Tarascon
, “Electrical energy storage for the grid: A battery of choices
,” Science
334
, 928
–935
(2011
). 2.
A.
Doron
, Z.
Ella
, C.
Yaron
, and T.
Hanan
, “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
,” Solid State Ion.
148
, 405
–416
(2002
). 3.
M.
Yoshio
, H.
Wang
, and K.
Fukuda
, “Spherical carbon-coated natural graphite as a lithium-ion battery-anode material
,” Angew. Chem. Int. Ed.
42
, 4203
–4206
(2003
). 4.
G.
Jeong
, Y.-U.
Kim
, H.
Kim
, Y.-J.
Kim
, and H.-J.
Sohn
, “Prospective materials and applications for Li secondary batteries
,” Energy Environ. Sci.
4
, 1986
–2002
(2011
). 5.
M. H.
Park
, M. G.
Kim
, J.
Joo
, K.
Kim
, J.
Kim
, S.
Ahn
, Y.
Cui
, and J.
Cho
, “Silicon nanotube battery anodes
,” Nano Lett.
9
, 3844
–3847
(2009
). 6.
T.-L.
Chan
and J. R.
Chelikowsky
, “Controlling diffusion of lithium in silicon nanostructures
,” Nano Lett.
10
, 821
–825
(2010
). 7.
J.
Sun
, G.
Zheng
, H.-W.
Lee
, N.
Liu
, H.
Wang
, H.
Yao
, W.
Yang
, and Y.
Cui
, “Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes
,” Nano Lett.
14
, 4573
–4580
(2014
). 8.
M. C.
Stan
, J.
von Zamory
, S.
Passerini
, T.
Nilges
, and M.
Winter
, “Puzzling out the origin of the electrochemical activity of black phosphorous as a negative electrode material for lithium-ion batteries
,” J. Mater. Chem. A
1
, 5293
–5300
(2013
). 9.
W.
Ai
, J.
Jiang
, J.
Zhu
, Z.
Fan
, Y.
Wang
, H.
Zhang
, W.
Huang
, and T.
Yu
, “Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion battery
,” Adv. Energy Mater.
5
, 1500559
(2015
). 10.
O.
Mashtalir
, M.
Naguib
, V. N.
Mochalin
, Y.
Dall’Agnese
, M.
Heon
, M. W.
Barsoum
, and Y.
Gogotsi
, “Intercalation and delamination of layered carbides and carbonitrides
,” Nat. Commun.
4
, 1716
(2013
). 11.
H.
Hwang
, H.
Kim
, and J.
Cho
, “MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
,” Nano Lett.
11
, 4826
–4830
(2011
). 12.
G. A.
Tritsaris
, E.
Kaxiras
, S.
Meng
, and E.
Wang
, “Adsorption and diffusion of lithium on layered silicon for Li-ion storage
,” Nano Lett.
13
, 2258
–2263
(2013
). 13.
S.
Zhao
, W.
Kang
, and J.
Xue
, “The potential application of phosphorene as an anode material in Li-ion batteries
,” J. Mater. Chem. A
2
, 19046
–19052
(2014
). 14.
B.
Mortazavi
, A.
Dianat
, G.
Cuniberti
, and T.
Rabczuk
, “Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation
,” Electrochim. Acta
213
, 865
–870
(2016
). 15.
H. R.
Jiang
, Z.
Lu
, M.
Wu
, F.
Ciucci
, and T. S.
Zhao
, “Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries
,” Nano Energy
23
, 97
–104
(2016
). 16.
Y.
Jing
, Z.
Zhou
, C. R.
Cabrera
, and Z.
Chen
, “Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries
,” J. Phys. Chem. C
117
, 25409
–25413
(2013
). 17.
D.
Er
, J.
Li
, M.
Naguib
, Y.
Gogotsi
, and V. B.
Shenoy
, “Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries
,” ACS Appl. Mater. Interfaces
6
, 11173
–11179
(2014
). 18.
S.
Karmakar
, C.
Chowdhury
, and A.
Datta
, “Two-dimensional group IV monochalcogenides: Anode materials for Li-ion batteries
,” J. Phys. Chem. C
120
, 14522
–14530
(2016
). 19.
Q.
Sun
, Y.
Dai
, Y.
Ma
, T.
Jing
, W.
Wei
, and B.
Huang
, “Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries
,” J. Phys. Chem. Lett.
7
, 937
–943
(2016
). 20.
X.
Zhang
, Z.
Yu
, S.-S.
Wang
, S.
Guan
, H. Y.
Yang
, Y.
Yao
, and S. A.
Yang
, “Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries
,” J. Mater. Chem. A
4
, 15224
–15231
(2016
). 21.
X.
Zhang
, L.
Jin
, X.
Dai
, G.
Chen
, and G.
Liu
, “Two-dimensional GaN: An excellent electrode material providing fast ion diffusion and high storage capacity for Li-ion and Na-ion batteries
,” ACS Appl. Mater. Interfaces
10
(45
), 38978
–38984
(2018
). 22.
Y.
Li
, Y.
Liao
, and Z.
Chen
, “Be2C monolayer with quasi-planar hexacoordinate carbons: A global minimum structure
,” Angew. Chem. Int. Ed.
53
, 7248
–7252
(2014
). 23.
M.
Naseri
, J.
Jalilian
, F.
Parandin
, and K.
Salehi
, “A new stable polycrystalline Be2C monolayer: A direct semiconductor with hexa-coordinate carbons
,” Phys. Lett. A
382
, 2144
–2148
(2018
). 24.
P.
Giannozzi
et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,” J. Phys. Condens. Matter
21
, 395502
(2009
). 25.
P.
Giannozzi
et al., “Advanced capabilities for materials modelling with quantum ESPRESSO
,” J. Phys. Condens. Matter
29
, 465901
(2017
). 26.
J. P.
Perdew
, K.
Burke
, and M.
Ernzerhof
, “Generalized gradient approximation made simple
,” Phys. Rev. Lett.
77
, 3865
(1996
). 27.
S.
Grimme
, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,” J. Comput. Chem.
27
, 1787
(2006
). 28.
G.
Henkelman
and H.
Jósson
, “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,” J. Chem. Phys.
113
, 9978
–9985
(2000
). 29.
A.
Kokalj
, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
,” Comput. Mater. Sci.
28
, 155
–168
(2003
). 30.
Q.
Pang
, C.-L.
Zhang
, L.
Li
, Z.-Q.
Fu
, X.-M.
Wei
, and Y.-L.
Song
, “Adsorption of alkali metal atoms on germanene: A first-principles study
,” Appl. Surf. Sci.
314
, 15
–20
(2014
). 31.
J.
Khanifaev
, R.
Peköz
, M.
Konuk
, and E.
Durgun
, “The interaction of halogen atoms and molecules with borophene
,” Phys. Chem. Chem. Phys.
19
, 28963
–28969
(2017
). 32.
S.
Jana
, S.
Thomas
, C. H.
Lee
, B.
Jun
, and S. U.
Lee
, “B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries
,” J. Mater. Chem. A
7
, 12706
–12712
(2019
). 33.
H. R.
Jiang
, W.
Shyy
, M.
Liu
, L.
Wei
, M. C.
Wu
, and T. S.
Zhao
, “Boron phosphide monolayer as a potential anode material for alkali metal-based batteries
,” J. Mater. Chem. A.
5
, 672
–679
(2017
). 34.
F.
Li
, Y.
Qu
, and M.
Zhao
, “Germanium sulfide nanosheet: A universal anode material for alkali metal ion batteries
,” J. Mater. Chem. A
4
, 8905
–8912
(2016
). 35.
X.
Lv
, W.
Wei
, Q.
Sun
, B.
Huang
, and Y.
Dai
, “A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries
,” J. Phys. D Appl. Phys.
50
, 235501
(2017
). 36.
J.
Hu
, B.
Xu
, C.
Ouyang
, Y.
Zhang
, and S. A.
Yang
, “Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first principles calculations
,” RSC Adv.
6
, 27467
–27474
(2016
). 37.
M. K.
Aydinol
, A. F.
Kohan
, G.
Ceder
, K.
Cho
, and J.
Joannopoulos
, “Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
,” Phys. Rev. B
56
, 1354
–1365
(1997
). 38.
E.
Lee
and K. A.
Persson
, “Li absorption and intercalation in single layer graphene and few layer graphene by first principles
,” Nano Lett.
12
, 4624
–4628
(2012
). 39.
E.
Pollak
, B.
Geng
, K.-J.
Jeon
, I. T.
Lucas
, T. J.
Richardson
, F.
Wang
, and R.
Kostecki
, “The interaction of Li+ with single-layer and few-layer graphene
,” Nano Lett.
10
, 3386
–3388
(2010
). 40.
X.
Fan
, W. T.
Zheng
, J.-L.
Kuo
, and D. J.
Singh
, “Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries
,” ACS Appl. Mater. Interfaces
5
, 7793
–7797
(2013
). 41.
S. S.
Zhang
and T. R.
Jow
, “Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries
,” J. Power Sources
109
, 422
–426
(2002
). 42.
H.
Zheng
, K.
Jiang
, T.
Abe
, and Z.
Ogumi
, “Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes
,” Carbon
44
, 203
–210
(2006
). 43.
Z.
Yang
, D.
Choi
, S.
Kerisit
, K. M.
Rosso
, D.
Wang
, J.
Zhang
, G.
Graff
, and J.
Liu
, “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review
,” J. Power Sources
192
, 588
–598
(2009
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.