InTe is a newly emerging thermoelectric material working at a middle temperature range with an ultralow thermal conductivity. Nevertheless, the figure of merit (ZT) of InTe currently is way too inappreciable compared with other material systems. In this work, we present that a peak ZT as high as ∼0.8 is achieved at 723 K in InTe composited with 1.02% of CuInTe2 prepared by spark plasma sintering. The large improvement of thermoelectric performance in sintered InTe mainly comes from the enhancement of conductivity. The reasons for this phenomenon are investigated as well. We find that extra In vacancies which lead to an increment of hole concentration and the energy barrier at grain boundaries are responsible for the behavior of electrical properties. Besides, a small amount of CuInTe2 also contributes to the improvement of power factor, which leads to higher ZT.

1.
L.-D.
Zhao
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
7
(
1
),
251
(
2014
).
2.
L. E. J. S.
Bell
,
Science
321
(
5895
),
1457
(
2008
).
3.
G. J.
Snyder
and
E. S.
Toberer
, in
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
(
World Scientific
,
2011
), pp.
101
110
.
4.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
(
5888
),
554
(
2008
).
5.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
(
7345
),
66
(
2011
).
6.
E. S.
Toberer
,
A.
Zevalkink
, and
G. J.
Snyder
,
J. Mater. Chem.
21
(
40
),
15843
(
2011
).
7.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
489
(
7416
),
414
(
2012
).
8.
M. K.
Jana
,
K.
Pal
,
U. V.
Waghmare
, and
K.
Biswas
,
Angew. Chem.
128
(
27
),
7923
(
2016
).
9.
S. Y.
Back
,
H.
Cho
,
Y.-K.
Kim
,
S.
Byeon
,
H.
Jin
,
K.
Koumoto
, and
J.-S.
Rhyee
,
AIP Adv.
8
(
11
),
115227
(
2018
).
10.
W.
Klemm
and
H. U.
v. Vogel
,
Z. Anorg. Allg. Chem.
219
(
1
),
45
(
1934
).
11.
J.
Hogg
and
H.
Sutherland
,
Acta Crystallogr. B
32
(
9
),
2689
(
1976
).
12.
A.
Panich
,
J. Phys. Condens. Matter
20
(
29
),
293202
(
2008
).
13.
Ş.
Ellialtıoğlu
,
E.
Mete
,
R.
Shaltaf
,
K.
Allakhverdiev
,
F.
Gashimzade
,
M.
Nizametdinova
, and
G.
Orudzhev
,
Phys. Rev. B
70
(
19
),
195118
(
2004
).
14.
V. V.
Bozhko
,
ОV
Novosad
,
O. V.
Parasyuk
,
V. R.
Kozer
,
V.
Vertelis
,
A.
Nekrošius
, and
V.
Kažukauskas
,
J. Alloys Compd.
618
,
712
(
2015
).
15.
V. I.
Fistul
,
Heavily Doped Semiconductors
(
Plenum Press
,
New York
,
1969
).
16.
C.
Chubilleau
,
B.
Lenoir
,
A.
Dauscher
, and
C.
Godart
,
Intermetallics
22
,
47
(
2012
).
17.
J. Y.
Seto
,
J. Appl. Phys.
46
(
12
),
5247
(
1975
).
18.
See https://materials.springer.com/isp/phase-diagram/docs/c_0926574 for “Cu-In-Te Vertical Section of Ternary Phase Diagram” datasheet, PAULING FILE Multinaries Edition – 2012 database, edited by P. Villars (
Springer-Verlag GmbH, Heidelberg
,
2016
), dataset c_0926574.
19.
S.
Ohno
,
K.
Imasato
,
S.
Anand
,
H.
Tamaki
,
S. D.
Kang
,
P.
Gorai
,
H. K.
Sato
,
E. S.
Toberer
,
T.
Kanno
, and
G. J.
Snyder
,
Joule
2
(
1
),
141
(
2018
).
20.
C.
Crawford
,
B. R.
Ortiz
,
P.
Gorai
,
V.
Stevanovic
, and
E. S.
Toberer
,
J. Mater. Chem. A
6
(
47
),
24175
(
2018
).
21.
B. R.
Ortiz
,
K.
Gordiz
,
L. C.
Gomes
,
T.
Braden
,
J. M.
Adamczyk
,
J.
Qu
,
E.
Ertekin
, and
E. S.
Toberer
,
J. Mater. Chem. A
7
(
2
),
621
(
2019
).
22.
N.
Cheng
,
R.
Liu
,
S.
Bai
,
X.
Shi
, and
L.
Chen
,
J. Appl. Phys.
115
(
16
)
163705
(
2014
).
23.
D. G.
Cahill
,
S. K.
Watson
, and
R. O.
Pohl
,
Phys. Rev. B
46
(
10
),
6131
(
1992
).

Supplementary Material

You do not currently have access to this content.