We show theoretically that, in the presence of space charge, the Seebeck coefficient of a homogeneous plane-parallel capacitor could go beyond corresponding limits of the linear-response regime. In this study, we consider the coexistence of p-type and n-type carriers and interrelate the carrier concentrations via the mass-action law. If only Ohmic conductivity is considered or if the distribution of space charge is taken to be uniform, the Seebeck coefficient, which is the same as that given by Onsager’s reciprocal relations, takes on a magnitude between 0 and kB/q, where kB is the Boltzmann constant and q is the electronic charge. But in the nonlinear-response regime which corresponds to any space-charge-limited scenario with a nonuniform distribution of space charge, Onsager’s reciprocal relations break down and the magnitude of the Seebeck coefficient takes on a value between kB/q and 2kB/q, exceeding the limit of the linear-response regime.

1.
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer
,
Heidelberg
,
2016
).
2.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
New Jersey
,
2004
).
3.
G. J.
Snyder
and
T. S.
Ursell
, “
Thermoelectric efficiency and compatibility
,”
Phys. Rev. Lett.
91
,
148301
(
2003
).
4.
G. J.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
114
(
2008
).
5.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
OQ́uinn
, “
Thin-film thermoelectric devices with high room-temperature figures of merit
,”
Nature
413
,
597
(
2001
).
6.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard
, and
J. R.
Heath
, “
Silicon nanowires as efficient thermoelectric materials
,”
Nature
451
,
168
(
2008
).
7.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R. G.
Yang
,
H.
Lee
,
D. Z.
Wang
,
Z. F.
Ren
,
J.-P.
Fleurial
, and
P.
Gogna
, “
New directions for low-dimensional thermoelectric materials
,”
Adv. Mater.
19
,
1043
1053
(
2007
).
8.
C. J.
Vineis
,
A.
Shakouri
,
A.
Majumdar
, and
M. G.
Kanatzidis
, “
Nanostructured thermoelectrics: Big efficiency gains from small features
,”
Adv. Mater.
22
,
3970
3980
(
2010
).
9.
J.-H.
Jiang
, “
Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects
,”
J. Appl. Phys.
116
,
194303
(
2014
).
10.
B.
Liu
,
J.
Hu
,
J.
Zhou
, and
R.
Yang
, “
Thermoelectric transport in nanocomposites
,”
Materials
10
,
418
(
2017
).
11.
Y.
Dubi
and
M.
Di Ventra
, “
Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions
,”
Rev. Mod. Phys.
83
,
131
155
(
2011
).
12.
E.-S.
Lee
,
S.
Cho
,
H.-K.
Lyeo
, and
Y.-H.
Kim
, “
Seebeck effect at the atomic scale
,”
Phys. Rev. Lett.
112
,
136601
(
2014
).
13.
G. T.
Craven
,
D.
He
, and
A.
Nitzan
, “
Electron-transfer-induced thermal and thermoelectric rectification
,”
Phys. Rev. Lett.
121
,
247704
(
2018
).
14.
G.
Benenti
,
G.
Casati
,
K.
Saito
, and
R. S.
Whitney
, “
Fundamental aspects of steady-state conversion of heat to work at the nanoscale
,”
Phys. Rep.
694
,
1
124
(
2017
).
15.
R.
Coelho
,
Physics of Dielectrics for the Engineer
(
Elsevier Scientific
,
New York
,
1979
).
16.
M.
Pope
and
C. E.
Swemberg
,
Electronic Processes in Organic Crystals and Polymers
(
Oxford University Press
,
Oxford
,
1998
).
17.
K. S.
Suh
,
J. E.
Kim
,
W. J.
Oh
,
H. G.
Yoon
, and
T.
Takada
, “
Charge distribution and conduction characteristics of 2-vinylpyridine-grafted polyethylenes
,”
J. Appl. Phys.
87
,
7333
7337
(
2000
).
18.
A.
Laha
and
S. B.
Krupanidhi
, “
Leakage current conduction of pulsed excimer laser ablated BaBi2Nb2O9 thin films
,”
J. Appl. Phys.
92
,
415
420
(
2002
).
19.
A.
Carbone
,
B. K.
Kotowska
, and
D.
Kotowski
, “
Space-charge-limited current fluctuations in organic semiconductors
,”
Phys. Rev. Lett.
95
,
236601
(
2005
).
20.
H.-K.
Chan
,
C. H.
Lam
, and
F. G.
Shin
, “
Time-dependent space-charge-limited conduction as a possible origin of the polarization offsets observed in compositionally graded ferroelectric films
,”
J. Appl. Phys.
95
,
2665
2671
(
2004
).
21.
H.-K.
Chan
,
Y.
Zhou
,
C. H.
Lam
, and
F. G.
Shin
, “Theory of time-dependent space-charge-limited conduction,” in Proceedings of IEEE 2007 9th International Conference on Solid Dielectrics (IEEE, 2007), pp. 35–38.
22.
H.-K.
Chan
, “A general conductivity expression for space-charge-limited conduction in ferroelectrics and other solid dielectrics,” in Ferroelectrics—Characterization and Modeling, edited by M. Lallart (IntechOpen, London, 2011).
23.
L. E.
Reichl
,
A Modern Course in Statistical Physics
, 2nd ed. (
Wiley-VCH
,
Singapore
,
1998
).
24.
A. V.
da Rosa
,
Fundamentals of Renewable Energy Processes
, 3rd ed. (
Academic Press
,
Singapore
,
2012
).
You do not currently have access to this content.