Laser-assisted atom probe tomography (APT) and high-resolution dark-field electron holography (HR-DFEH) were performed to investigate the composition of a polar [0001] GaN/AlxGa1 − xN/InyGa1 − yN light emitting diode. In particular, the III-site fraction of both AlxGa1 − xN and InyGa1 − yN alloys was studied adopting a comparative approach. HR-DFEH allows mapping the projected strain with a subnanometer spatial resolution which is used for the calculation of the two-dimensional alloy composition distribution. APT provides three-dimensional alloys composition distribution with a nanometer spatial resolution. However, here we reveal that important inaccuracies affect local composition measurements. A Ga-poor composition is obtained in high DC-electric field regions. Moreover, such inaccuracies may be locally enhanced where the [0001] pole intersects the surface of the analyzed specimen, leading to a lower fraction of Ga measured. III-site fractions closer to the nominal values were measured at low field conditions. Ga loss is thought to be due to preferential DC field induced evaporation of Ga ions between laser pulses. This is explained in terms of formation of a metallic layer on the tip surface during APT analysis, where weak Ga-Ga bonds are formed, promoting the loss of Ga at high field conditions.

1.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
, and
S. I.
Nagahama
,
Jpn. J. Appl. Phys.
34
(
7A
),
L797
(
1995
).
2.
M.
Yamada
,
Y.
Narukawa
, and
T.
Mukai
,
Jpn. J. Appl. Phys.
41
(
3A
),
L246
(
2002
).
3.
D. M.
Graham
,
P.
Dawson
,
G. R.
Chabrol
, and
N. P.
Hylton
,
J. Appl. Phys.
101
,
033516
(
2007
).
4.
D. M.
Graham
,
A.
Soltani-Vala
,
P.
Dawson
, and
M. J.
Godfrey
,
J. Appl. Phys.
97
,
103508
(
2005
).
5.
D. M.
Graham
,
A.
Soltani Vala
,
P.
Dawson
,
M. J.
Godfrey
,
M. J.
Kappers
,
T. M.
Smeeton
,
J. S.
Barnard
,
C. J.
Humphreys
, and
E. J.
Thrush
,
Phys. Status Solidi B
240
(
2
),
344
(
2003
).
6.
S.
Kalliakos
,
P.
Lefebvre
,
X. B.
Zhang
,
T.
Taliercio
,
B.
Gil
,
N.
Grandjean
,
B.
Damilano
, and
J.
Massies
,
Phys. Status Solidi A
190
(
1
),
149
(
2002
).
7.
B.
Monemar
and
G.
Pozina
,
Prog. Quant. Electron.
24
,
239
(
2000
).
8.
S.
Grzanka
,
G.
Franssen
,
G.
Targowski
,
K.
Krowicki
,
T.
Suski
,
R.
Czernecki
,
P.
Perlin
, and
M.
Leszczyński
,
Appl. Phys. Lett.
90
,
103507
(
2007
).
9.
C. S.
Xia
,
Z. M.
Simon Li
, and
Y.
Sheng
,
Appl. Phys. Lett.
103
,
233505
(
2013
).
10.
T. M.
Smeeton
,
M. J.
Kappers
,
J. S.
Barnard
,
M. E.
Vickers
, and
C. J.
Humphreys
,
Appl. Phys. Lett.
83
(
26
),
5419
(
2003
).
11.
A.
Rosenauer
,
T.
Mehrtens
,
K.
Muller
,
K.
Gries
,
M.
Schowalter
,
P.
Venkata Satyam
,
S.
Bley
,
C.
Tessarek
,
D.
Hommel
,
K.
Sebald
,
M.
Seyfried
,
J.
Gutowski
,
A.
Avramescu
,
K.
Engl
, and
S.
Lutgen
,
Ultramicroscopy
111
,
1316
(
2011
).
12.
M. J.
Galtrey
,
R. A.
Oliver
,
M. J.
Kappers
, and
C. J.
Humphreys
,
Appl. Phys. Lett.
90
,
061903
(
2007
).
13.
M. J.
Galtrey
,
R. A.
Oliver
,
M. J.
Kappers
,
C.
McAleese
,
D.
Zhu
,
C. J.
Humphreys
,
P. H.
Clifton
,
D.
Larson
, and
A.
Cerezo
,
Appl. Phys. Lett.
92
(
4
),
041904
(
2008
).
14.
F.
Liu
,
L.
Huang
,
R. F.
Davis
,
L. M.
Porter
,
D. K.
Schreiber
,
S. V.
Kuchibatla
,
V.
Shutthanandan
,
S.
Thevuthasan
,
E. A.
Preble
,
T.
Paskova
, and
K. R.
Evans
,
J. Vac. Sci. Technol. B
32
(
5
),
051209
(
2014
).
15.
J. T.
Griffiths
,
F.
Oehler
,
F.
Tang
,
S.
Zhang
,
W.
Yuen Fu
,
T.
Zhu
,
S. D.
Findlay
,
C.
Zheng
,
J.
Etheridge
,
T. L.
Martin
,
P. A. J.
Bagot
,
M. P.
Moody
,
D.
Sutherland
,
P.
Dawson
,
M. J.
Kappers
,
C. J.
Humphreys
, and
R. A.
Oliver
,
J. Appl. Phys.
119
,
175703
(
2016
).
16.
T.
Mehrtens
,
M.
Schowalter
,
D.
Tytko
,
P.
Choi
,
D.
Raabe
,
L.
Hoffmann
,
H.
Jönen
,
U.
Rossow
,
A.
Hangleiter
, and
A.
Rosenauer
,
Appl. Phys. Lett.
102
,
132112
(
2013
).
17.
B.
Bonef
,
M.
Catalano
,
C.
Lund
,
S. P.
Denbaars
,
S.
Nakamura
,
U. K.
Mishra
,
M. J.
Kim
, and
S.
Keller
,
Appl. Phys. Lett.
110
,
143101
(
2017
).
18.
T. J.
Prosa
,
P. H.
Clifton
,
H.
Zhong
,
A.
Tyagi
,
R.
Shivaraman
,
S. P.
DenBaars
,
S.
Nakamura
, and
J. S.
Speck
,
Appl. Phys. Lett.
98
,
191903
(
2011
).
19.
D. J.
Larson
,
T. J.
Prosa
,
D.
Olson
,
W.
Lefebvre
,
D.
Lawrence
,
P. H.
Clifton
, and
T. F.
Kelly
,
J. Phys. Conf. Ser.
471
,
012030
(
2013
).
20.
L.
Mancini
,
D.
Hernández-Maldonado
,
W.
Lefebvre
,
J.
Houard
,
I.
Blum
,
F.
Vurpillot
,
J.
Eymery
,
C.
Durand
,
M.
Tchernycheva
, and
L.
Rigutti
,
Appl. Phys. Lett.
108
,
042102
(
2016
).
21.
J. R.
Riley
,
S.
Padalkar
,
Q.
Li
,
P.
Lu
,
D. D.
Koleske
,
J. J.
Wierer
,
G. T.
Wang
, and
L. J.
Lauhon
,
Nano Lett.
13
(
9
),
4317
(
2013
).
22.
M.
Khoury
,
H.
Li
,
B.
Bonef
,
L. Y.
Kuritzky
,
A. J.
Mughal
,
S.
Nakamura
,
J. S.
Speck
, and
S. P.
DenBaars
,
Appl. Phys. Express
11
,
036501
(
2018
).
23.
H.
Li
,
M.
Khoury
,
B.
Bonef
,
A. I.
Alhassan
,
A. J.
Mughal
,
E.
Azimah
,
M. E. A.
Samsudin
,
P.
De Mierry
,
S.
Nakamura
,
J. S.
Speck
, and
S. P.
DenBaars
,
ACS Appl. Mater. Interfaces
9
(
41
),
36417
(
2017
).
24.
J. R.
Riley
,
T.
Detchprohm
,
C.
Wetzel
, and
L. J.
Lauhon
,
Appl. Phys. Lett.
104
,
152102
(
2014
).
25.
L.
Mancini
,
N.
Amirifar
,
D.
Shinde
,
I.
Blum
,
M.
Gilbert
,
A.
Vella
,
F.
Vurpillot
,
W.
Lefebvre
,
R.
Lardé
,
E.
Talbot
,
P.
Pareige
,
X.
Portier
,
A.
Ziani
,
C.
Davesnne
,
C.
Durand
,
J.
Eymery
,
R.
Butté
,
J.-F.
Carlin
,
N.
Grandjean
, and
L.
Rigutti
,
J. Phys. Chem. C
118
,
24136
(
2014
).
26.
E.
Di Russo
,
F.
Moyon
,
N.
Gogneau
,
L.
Largeau
,
E.
Giraud
,
J.-F.
Carlin
,
N.
Grandjean
,
J.
Michel Chauveau
,
M.
Hugues
,
I.
Blum
,
W.
Lefebvre
,
F.
Vurpillot
,
D.
Blavette
, and
L.
Rigutti
,
J. Phys. Chem. C
122
(
29
),
16704
(
2018
).
27.
E.
Di Russo
,
I.
Blum
,
J.
Houard
,
M.
Gilbert
,
G.
Da Costa
,
D.
Blavette
, and
L.
Rigutti
,
Ultramicroscopy
187
,
126
(
2018
).
28.
E.
Di Russo
,
I.
Blum
,
J.
Houard
,
G.
Da Costa
,
D.
Blavette
, and
L.
Rigutti
,
Microsc. Microanal.
23
(
6
),
1067
(
2017
).
29.
B.
Bonef
,
R.
Cramer
, and
J. S.
Speck
,
J. Appl. Phys.
121
,
225701
(
2017
).
30.
L.
Rigutti
,
L.
Mancini
,
D.
Hernández-Maldonado
,
W.
Lefebvre
,
E.
Giraud
,
R.
Butté
,
J. F.
Carlin
,
N.
Grandjean
,
D.
Blavette
, and
F.
Vurpillot
,
J. Appl. Phys.
119
,
105704
(
2016
).
31.
E.
Di Russo
, “
Study of the physical mechanisms leading to compositional biases in atom probe tomography of semiconductors
,”
Ph.D. thesis
,
Normandie Université
,
2018
.
32.
R. J. H.
Morris
,
R.
Cuduvally
,
D.
Melkonyan
,
C.
Fleischmann
,
M.
Zhao
,
L.
Arnoldi
,
P.
van der Heide
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B
36
(
3
),
03F130
(
2018
).
33.
B.
Gault
,
D. W.
Saxey
,
M. V.
Ashton
,
S. B.
Sinnott
,
A. N.
Chiaramonti
,
M. P.
Moody
, and
D. K.
Schreiber
,
New J. Phys.
18
,
033031
(
2016
).
34.
D. R.
Diercks
,
B. P.
Gorman
,
R.
Kirchhofer
,
N.
Sanford
,
K.
Bertness
, and
M.
Brubaker
,
J. Appl. Phys.
114
,
184903
(
2013
).
35.
A. F.
Tsatsulnikov
,
W. V.
Lundin
,
A. V.
Sakharov
,
A. E.
Nikolaev
,
E. E.
Zavarin
,
S. O.
Usov
,
M. A.
Yagovkina
,
M. J.
Hÿtch
,
M.
Korytov
, and
N.
Cherkashin
,
Sci. Adv. Mater.
7
(
8
),
1629
(
2015
).
36.
S.
Padalkar
,
J. R.
Riley
,
Q.
Li
,
G. T.
Wang
, and
L. J.
Lauhon
,
Phys. Status Solidi C
11
(
3–4
),
656
(
2014
).
37.
I.
Blum
,
F.
Cuvilly
, and
W.
Lefebvre-Ulrikson
, “
Atom probe sample preparation
,” in
Atom Probe Tomography
(
Academic Press
,
2016
).
38.
J.
Bogdanowicz
,
A.
Kumar
,
C.
Fleischmann
,
M.
Gilbert
,
J.
Houard
,
A.
Vella
, and
W.
Vandervorst
,
Ultramicroscopy
188
,
19
(
2018
).
39.
M. J.
Hÿtch
,
F.
Houdellier
,
F.
Hüe
, and
E.
Snoeck
,
J. Phys. Conf. Ser.
241
,
012027
(
2010
).
40.
N.
Cherkashin
,
S.
Reboh
,
A.
Lubk
,
M. J.
Hÿtch
, and
A.
Claverie
,
Appl. Phys. Express
6
,
091301
(
2013
).
41.
K.
Pantzas
,
G.
Patriarche
,
D.
Troadec
,
M.
Kociak
,
N.
Cherkashin
,
M.
Hÿtch
,
J.
Barjon
,
C.
Tanguy
,
T.
Rivera
,
S.
Suresh
, and
A.
Ougazzaden
,
J. Appl. Phys.
117
,
055705
(
2015
).
42.
N. N.
Ledentsov
,
V. A.
Shchukin
,
Y. M.
Shernyakov
,
M. M.
Kulagina
,
A. S.
Payusov
,
N. Y.
Gordeev
,
M. V.
Maximov
,
A. E.
Zhukov
,
T.
Denneulin
, and
N.
Cherkashin
,
Opt. Express
26
(
11
),
13985
(
2018
).
43.
M. J.
Hÿtch
,
C.
Gatel
, and
K.
Ishizuka
,
HoloDark Phase
(
HREM Research
,
2010
).
44.
N.
Cherkashin
,
M. J.
Hÿtch
,
E.
Snoeck
,
F.
Hüe
,
J. M.
Hartmann
,
Y.
Bogumilowicz
, and
A.
Claverie
,
Nucl. Instrum. Methods Phys. Res. B
253
(
1–2
),
145
(
2006
).
45.
N.
Cherkashin
,
M. J.
Hytch
,
F.
Houdellier
,
F.
Hüe
,
V.
Paillard
,
A.
Claverie
,
A.
Gouyé
,
O.
Kermarrec
,
D.
Rouchon
,
M.
Burdin
, and
P.
Holliger
,
Appl. Phys. Lett.
94
(
14
),
141910
(
2009
).
46.
N.
Cherkashin
,
S.
Reboh
,
M. J.
Hÿtch
,
A.
Claverie
,
V. V.
Preobrazhenskii
,
M. A.
Putyato
,
B. R.
Semyagin
, and
V. V.
Chaldyshev
,
Appl. Phys. Lett.
102
,
173115
(
2013
).
47.
G.
Da Costa
,
F.
Vurpillot
,
A.
Bostel
, and
B.
Deconihout
,
Rev. Sci. Instrum.
76
,
013304
(
2005
).
48.
G.
Da Costa
,
H.
Wang
,
S.
Duguay
,
A.
Bostel
,
D.
Blavette
, and
B.
Deconihout
,
Rev. Sci. Instrum.
83
,
123709
(
2012
).
49.
P.
Li
,
B.
Bonef
,
M.
Khoury
,
G.
Lheureux
,
H.
Li
,
J.
Kang
,
S.
Nakamura
, and
S. P.
DenBaars
,
Superlattices Microstuct.
113
,
684
(
2018
).
50.
51.
M.
Müller
,
D. W.
Saxey
,
G. D. W.
Smith
, and
B.
Gault
,
Ultramicroscopy
111
,
487
(
2011
).
52.
B.
Gault
,
M.
Müller
,
A.
La Fontaine
,
M. P.
Moody
,
A.
Shariq
,
A.
Cerezo
,
S. P.
Ringer
, and
G. D. W.
Smith
,
J. Appl. Phys.
108
,
044904
(
2010
).
53.
D.
Zanuttini
,
I.
Blum
,
E.
Di Russo
,
L.
Rigutti
,
F.
Vurpillot
,
J.
Douady
,
E.
Jacquet
,
P.-M.
Anglade
, and
B.
Gervais
,
J. Chem. Phys.
149
,
134311
(
2018
).
54.
A.
Costales
,
M. A.
Blanco
,
Á.
Martín Pendás
,
A. K.
Kandalam
, and
R.
Pandey
,
J. Am. Chem. Soc.
124
(
15
),
4116
(
2002
).
55.
C.
Stampfl
and
C. G.
Van der Walle
,
Phys. Rev. B
59
,
5521
(
1999
).
56.
J.
Neugebauer
,
T.
Zywietz
,
M.
Scheffler
, and
J.
Northrup
,
Appl. Surf. Sci.
159–160
,
355
(
2000
).
57.
E.
Di Russo
,
J.
Houard
,
V.
Langolff
,
S.
Moldovan
,
L.
Rigutti
,
B.
Deconihout
,
D.
Blavette
,
J.
Bogdanowicz
, and
A.
Vella
,
Appl. Phys. Lett.
112
,
143103
(
2018
).
58.
J.
Nord
,
K.
Albe
,
P.
Erhart
, and
K.
Nordlund
,
J. Phys. Condens. Matter
15
(
32
),
5649
(
2003
).
59.
J. E.
Northrup
,
J.
Neugebauer
,
R. M.
Feenstra
, and
A. R.
Smith
,
Phys. Rev. B
61
(
15
),
9932
(
2000
).
60.
C.
Adelmann
,
J.
Brault
,
G.
Mula
,
B.
Daudin
,
L.
Lymperakis
, and
J.
Neugebauer
,
Phys. Rev. B
67
(
16
),
165419
(
2003
).
61.
E. P.
Silaeva
,
L.
Arnoldi
,
M. L.
Karahka
,
B.
Deconihout
,
A.
Menand
,
H. J.
Kreuzer
, and
A.
Vella
,
Nano Lett.
14
(
11
),
6066
(
2014
).

Supplementary Material

You do not currently have access to this content.