Subsurface metrology techniques are of significant importance at the nanoscale, for instance, for imaging buried defects in semiconductor devices and in intracellular structures. Recently, ultrasonic-based atomic force microscopy has attracted intense attention also for subsurface imaging. Despite many applications for measuring the real and imaginary part of the local surface modulus, the physical mechanism for subsurface imaging is not fully understood. This prevents accurate data interpretation and quantitative reconstruction of subsurface features and hinders the development of an optimized experimental and engineering setup. In this paper, we present quantitative depth-sensing of subsurface cavity structures using contact-resonance atomic force microscopy (CR-AFM) imaging and spectroscopy. Our results indicate that for imaging subsurface cavity structures using CR-AFM, the induced contact stiffness variations are the key contrast mechanism. The developed algorithm based on this mechanism allows one to precisely simulate the experimental image contrasts and give an accurate prediction of the detection depth. The results allow a better understanding of the imaging mechanism of ultrasonic-based AFM and pave the way for quantitative subsurface reconstruction.

1.
C. F.
Quate
,
A.
Atalar
, and
H. K.
Wickramasinghe
,
Proc. IEEE
67
,
1092
(
1979
).
2.
B.
Hadimioglu
and
J. S.
Foster
,
J. Appl. Phys.
56
,
1976
(
1984
).
3.
R. S.
Gilmore
,
K. C.
Tam
,
J. D.
Young
, and
D. R.
Howard
,
Philos. Trans. R. Soc. Lond. A
320
,
215
(
1986
).
4.
W.
Dürr
,
D. A.
Sinclair
, and
E. A.
Ash
,
Electron. Lett.
16
,
805
(
1980
).
5.
B. T.
Khuri-Yakub
,
C.
Cinbis
,
C. H.
Chou
, and
P. A.
Reinholdtsen
, in Proceedings of IEEE Ultrasonics Symposium (IEEE, Montreal, 1989), pp. 805–807.
6.
J. K.
Zienuk
and
A.
Latuszek
, in Acoustical Imaging, edited by H. Shimizu, N. Chubachi, and J. Kushibiki (Plenum Press, New York, 1989), pp. 219–224.
7.
A.
Kulik
,
J.
Attal
, and
G.
Gremaud
, in Acoustical Imaging, edited by Y. Wei and B. Gu (Plenum Press, New York, 1993), pp. 241–244.
8.
P.
Güthner
,
U. C.
Fischer
, and
K.
Dransfeld
,
Appl. Phys. B
48
,
89
(
1989
).
9.
J.
Heil
,
J.
Wesner
, and
W.
Grill
,
J. Appl. Phys.
64
,
1939
(
1988
).
10.
K.
Takata
,
T.
Hasegawa
,
S.
Hosaka
,
S.
Hosoki
, and
T.
Komoda
,
Appl. Phys. Lett.
55
,
1718
(
1989
).
11.
K.
Uozumi
and
K.
Yamamuro
,
Jpn. J. Appl. Phys.
28
,
L1297
(
1989
).
12.
B. T.
Khuri-Yakub
,
S.
Akamine
,
B.
Hadimioglu
,
H.
Yamada
, and
C. F.
Quate
,
Proc. SPIE
1556
,
30
39
(
1992
).
13.
E.
Chilla
,
W.
Rohrbeck
,
H. J.
Fröhlich
,
R.
Koch
, and
K. H.
Rieder
,
Appl. Phys. Lett.
61
,
3107
(
1992
).
14.
A.
Moreau
and
J. B.
Ketterson
,
J. Appl. Phys.
72
,
861
(
1992
).
15.
U.
Rabe
and
W.
Arnold
,
Appl. Phys. Lett.
64
,
1493
(
1994
).
16.
K.
Yamanaka
,
H.
Ogiso
, and
O.
Kolosov
,
Appl. Phys. Lett.
64
,
178
(
1994
).
17.
Acoustic Scanning Probe Microscopy, edited by F. Marinello, D. Passeri, and E. Savio (Springer, Heidelberg, 2013).
18.
U.
Rabe
, in Applied Scanning Probe Microscopy II, edited by B. Bhushan and H. Fuchs (Springer, Heidelberg, 2006), pp. 37–90.
19.
P. A.
Yuya
,
D. C.
Hurley
, and
J. A.
Turner
,
J. Appl. Phys.
104
,
074916
(
2008
).
20.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
1985
).
21.
V.
Scherer
,
K.
Janser
,
U.
Rabe
,
W.
Arnold
, and
O.
Meissner
, in Review of QNDE, edited by D. O. Thompson and D. E. Chimenti (Plenum Press, New York, 1997), Vol. 16, pp. 1391–1398.
22.
A.
Striegler
,
B.
Koehler
,
B.
Bendjus
et al.,
Ultramicroscopy
111
,
1405
(
2011
).
23.
G. J.
Verbiest
,
T. H.
Oosterkamp
, and
M. J.
Rost
,
Nanotechnology
24
,
365701
(
2013
).
24.
G. J.
Verbiest
,
T. H.
Oosterkamp
, and
M. J.
Rost
,
Nanotechnology
28
,
085704
(
2017
).
25.
G. S.
Shekhawat
and
V. P.
Dravid
,
Science
310
,
89
(
2005
).
26.
H. J.
Sharahi
,
G. S.
Shekhawat
,
V.
Dravid
et al.,
Nanoscale
9
,
2330
(
2017
).
27.
T.
Tsuji
and
K.
Yamanaka
,
Nanotechnology
12
,
301
(
2001
).
28.
A. F.
Sarioglu
,
A.
Atalar
, and
F. L.
Degertekin
,
Appl. Phys. Lett.
84
,
5368
(
2004
).
29.
Z.
Parlak
and
F. L.
Degertekin
,
J. Appl. Phys.
103
,
114910
(
2008
).
30.
J. P.
Killgore
,
J. Y.
Kelly
,
C. M.
Stafford
,
M. J.
Fasolka
, and
D. C.
Hurley
,
Nanotechnology
22
,
175706
(
2011
).
31.
M.
Hennes
,
A. M.
Jakob
,
F.
Lehnert
et al.,
Nanoscale
8
,
9398
(
2016
).
32.
M. J.
Cadena
,
Y.
Chen
,
R. G.
Reifenberger
, and
A.
Raman
,
Appl. Phys. Lett.
110
,
123108
(
2017
).
33.
F.
Dinelli
,
P.
Pingue
,
N. D.
Kay
, and
O. V.
Kolosov
,
Nanotechnology
28
,
085706
(
2017
).
34.
A.
Yao
,
K.
Kobayashi
,
S.
Nosaka
,
K.
Kimura
, and
H.
Yamada
,
Sci. Rep.
7
,
42718
(
2017
).
35.
K.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Ultramicroscopy
133
,
41
(
2013
).
36.
C.
Ma
,
Y.
Chen
,
W.
Arnold
, and
J.
Chu
,
J. Appl. Phys.
121
,
154301
(
2017
).
37.
U.
Rabe
,
M.
Kopycinska-Müller
, and
S.
Hirsekorn
, in Acoustic Scanning Probe Microscopy, edited by F. Marinello, D. Passeri, and E. Savio (Springer, Berlin, 2013), pp. 123–153.
38.
E.
Kester
,
U.
Rabe
,
L.
Presmanes
,
P.
Tailhades
, and
W.
Arnold
,
J. Phys. Chem. Solids
61
,
1275
(
2000
).
39.
D. C.
Hurley
,
M.
Kopycinska-Müller
,
A. B.
Kos
, and
R. H.
Geiss
,
Meas. Sci. Technol.
16
,
2167
(
2005
).
40.
H.
Wagner
,
D.
Bedorf
,
S.
Küchemann
et al.,
Nat. Mater.
10
,
439
(
2011
).
41.
J. P.
Killgore
and
F. W.
DelRio
,
Macromolecules
51
,
6977
(
2018
).
42.
J. A.
Turner
and
J. S.
Wiehn
,
Nanotechnology
12
,
322
(
2001
).
43.
A.
Perriot
and
E.
Barthel
,
J. Mater. Res.
19
,
600
(
2004
).
44.
R.
Szilard
,
Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2004
), pp. 161–165.
45.
P. A.
Yuya
,
D. C.
Hurley
, and
J. A.
Turner
,
J. Appl. Phys.
109
,
113528
(
2011
).
46.
C.
Ma
,
Y.
Chen
, and
T.
Wang
,
AIP Adv.
5
,
027116
(
2015
).
47.
S.
Park
,
H. C.
Floresca
,
Y.
Suh
, and
M. J.
Kim
,
Carbon
48
,
797
(
2010
).
48.
K.
Kim
,
Z.
Lee
,
W.
Regan
et al.,
ACS Nano
5
,
2142
(
2011
).
49.
Y. V.
Lange
,
Nondestruct. Test. Eval.
11
,
177
(
1994
).
50.
I. I.
Argatov
,
J. Mech. Phys. Solids
70
,
190
(
2014
).
51.
W.
Zhang
,
Y.
Chen
,
H.
Liu
, and
L.
Zheng
,
Appl. Phys. Lett.
113
,
193105
(
2018
).
You do not currently have access to this content.