There is considerable interest in mitigating secondary electron emission (SEE) from surfaces and electrodes produced by incident electrons, due to the deleterious effects of SEE in vacuum electron devices, accelerators, and other technologies. Since surface conditions are known to affect SEE, here the role played by crystal orientation and a vacancy (which is a simple example of a surface defect) is probed through Monte Carlo simulations. The effect of the lattice imperfection on the frequency-dependent permittivity, which then influences inelastic energy losses, mean free paths, and secondary generation profiles, is obtained on the basis of density-functional theory. The Monte Carlo simulations are in good agreement with previous experimental reports. The results indicate that the secondary electron yield for pure copper is the highest for the 110 orientation and the lowest for the 111 case, with a relatively higher differential predicted between a single vacancy and ideal copper for the 111 orientation. The results underscore the benefit of annealing or reducing inhomogeneities through laser or charged particle beam surface treatments.

1.
M.
Izawa
,
Y.
Sato
, and
T.
Toyomasu
,
Phys. Rev. Lett.
74
,
5044
(
1995
).
3.
J. R. M.
Vaughan
,
IEEE Trans. Electron Devices
35
,
1172
(
1988
).
4.
J.
Chang
,
P.
Lawless
, and
T.
Yamamoto
,
IEEE Trans. Plasma Sci.
19
,
1152
(
1991
).
5.
J. R. M.
Vaughan
,
IRE Trans. Electron Devices
8
,
302
(
1961
).
6.
H. C.
Kim
and
J. P.
Verboncoeur
,
Phys. Plasmas
12
,
123504
(
2005
).
7.
R. A.
Kishek
,
Y. Y.
Lau
,
L. K.
Ang
,
A.
Valfells
, and
R. M.
Gilgenbach
,
Phys. Plasmas
5
,
2120
(
1988
).
8.
N.
Balcon
,
D.
Payan
,
M.
Belhaj
,
T.
Tondu
, and
V.
Inguimbert
,
IEEE Trans. Plasma Sci.
40
,
282
(
2012
).
9.
A. S.
Gilmore
,
Microwave Tubes
(
Artech House
,
Norwood
,
MA
,
1986
), p.
474
.
10.
Y.
Saito
,
S.
Michizono
,
S.
Anami
, and
S.
Kobayashi
,
IEEE Trans. Electr. Insul.
28
,
566
(
1993
).
11.
K. J.
Kleman
, in IEEE Proceedings of the 1993 Particle Accelerator Conference (IEEE, Piscataway, NJ, 1993), p. 924.
12.
E. G.
Schweppe
,
R.
Bachmor
, and
E.
Demmel
, in IEEE Proceedings of the 1993 Particle Accelerator Conference (IEEE, Piscataway, NJ, 1993), p. 1178.
13.
F.
Hohn
,
W.
Jacob
,
R.
Beckmann
, and
R.
Wilhelm
,
Phys. Plasmas
4
,
940
944
(
1997
).
14.
N.
Rozario
,
H. F.
Lenzing
,
K. F.
Reardon
,
M. S.
Zarro
, and
C. G.
Baran
,
IEEE Trans. Microw. Theory Tech.
42
,
558
(
1994
).
15.
R. A.
Kishek
and
Y. Y.
Lau
,
Phys. Rev. Lett.
75
,
1218
(
1995
).
16.
R. A.
Kishek
and
Y. Y.
Lau
,
Phys. Plasmas
3
,
1481
(
1996
).
17.
V. P.
Gopinath
,
J. P.
Verboncoeur
, and
C. K.
Birdsall
,
Phys. Plasmas
5
,
1535
(
1998
).
18.
A. R.
Martin
,
J. British Interplanetary Society
47
,
134
(
1994
).
19.
C.
Watts
,
M.
Gilmore
, and
E.
Schamiloglu
,
IEEE Trans. Plasma Sci.
39
,
836
(
2011
).
20.
D.
Cahen
and
A.
Kahn
,
Adv. Mater.
15
,
271
(
2003
).
21.
R. W.
Strayer
,
W.
Mackie
, and
L. W.
Swanson
,
Surf. Sci.
34
,
225
(
1973
).
22.
23.
V. E.
Semenov
,
E. I.
Rakova
,
D.
Anderson
,
M.
Lisak
, and
J.
Puech
,
Phys. Plasmas
14
,
033501
(
2007
).
24.
A.
Iqbal
,
J.
Verboncoeur
, and
P.
Zhang
,
Phys. Plasmas
25
,
043501
(
2018
).
25.
S.
Anza
,
M.
Mattes
,
C.
Vicente
,
J.
Gil
,
D.
Raboso
,
V. E.
Boria
, and
B.
Gimeno
,
Phys. Plasmas
18
,
032105
(
2011
).
26.
S.
Riyopoulos
,
Phys. Plasmas
5
,
305
(
1998
).
27.
L. K.
Ang
,
Y. Y.
Lau
,
R. A.
Kishek
, and
R. M.
Gilgenbach
,
IEEE Trans. Plasma Sci.
26
,
290
(
1998
).
28.
A.
Valfells
,
J. P.
Verboncoeur
, and
Y. Y.
Lau
,
IEEE Trans. Plasma Sci.
28
,
529
(
2000
).
29.
G.
Cheng
,
L.
Liu
,
Y.
Liu
, and
C.
Yuan
,
IEEE Trans. Plasma Sci.
37
,
1968
(
2009
).
30.
J.
Vaughan
,
IEEE Trans. Electron Devices
36
,
1963
(
1989
).
31.
C.
Vicente
,
M.
Mattes
,
D.
Wolk
,
H. L.
Hartnagel
,
J. R.
Mosig
, and
D.
Raboso
, “
Multipactor breakdown prediction in rectangular waveguide based components
,” in
2005 IEEE MTT-S International Microwave Symposium Digest
(
IEEE
,
New York
,
CA
,
2005
), Vol. 2, pp.
1055
1058
.
32.
M. A.
Furman
and
M. T. F.
Pivi
,
Phys. Rev. Spec. Top.
5
,
124404
(
2002
).
33.
34.
E. M.
Baroody
,
Phys. Rev.
78
,
780
(
1950
).
35.
M.
Dapor
,
J. Electron Spectrosc. Relat. Phenom.
151
,
182
(
2006
).
37.
R.
Shimizu
and
Z. J.
Ding
,
Rep. Prog. Phys.
55
,
487
(
1992
).
38.
K.
Murata
,
D. F.
Kyser
, and
C. H.
Ting
,
J. Appl. Phys.
51
, 4396 (
1981
).
39.
Z. J.
Ding
and
R.
Shimizu
,
Scanning
18
,
92
(
1996
).
40.
S. C.
Luo
and
D. C.
Joy
, “
Fundamental electron and ion beam interactions with solids for microscopy, microanalysis and microlithography
,” in
Scanning Microscopy (Suppl 4)
, edited by
J.
Schou
,
P.
Kruit
, and
D. E.
Newbury
(
Scanning Microscopy International
,
Chicago
,
1990
), pp.
127
146
.
41.
D. E.
Newbury
,
R. L.
Myklebust
, and
E. B.
Steel
, in
Microbeam Analysis—1990
, edited by
J. R.
Michael
and
P.
Ingram
(
San Fransico Press
,
San Francisco
,
1990
), pp.
127
130
.
42.
M.
Dapor
,
Nucl. Instrum. Methods Phys. Res. B
269
,
1668
(
2011
).
43.
D. C.
Joy
,
Scanning Microsc.
5
,
329
(
1991
).
44.
D. C.
Joy
and
S.
Luo
,
Scanning
11
,
176
(
1989
).
46.
H. A.
Bethe
and
J.
Ashkin
,
Exp. Nucl. Phys.
1
,
166
(
1953
).
47.
R. M.
Nieminen
,
Scanning Microsc.
2
,
1917
(
1988
).
48.
Z. J.
Ding
,
X. D.
Tang
, and
R.
Shimizu
,
J. Appl. Phys.
89
,
718
(
2001
).
49.
Z. J.
Ding
and
R.
Shimizu
,
Surf. Sci.
222
,
313
(
1989
).
50.
N. F.
Mott
and
H. S. W.
Massey
,
The Theory of Atomic Collisions
, 3rd ed. (
Oxford University Press
,
1965
).
51.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
52.
Y.
He
and
T.
Zeng
,
J. Phys. Chem. C
114
,
18023
(
2010
).
53.
K.
Glantschnig
and
C.
Ambrosch-Draxl
,
New J. Phys.
12
,
103048
(
2010
).
54.
J.
Yan
,
K. W.
Jacobsen
, and
K. Y.
Thygesen
,
Phys. Rev. B
84
,
235430
(
2011
).
55.
See http://cms.mpi.univie.ac.at/vasp for more information about the VASP simulator.
56.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
57.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
58.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
59.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
60.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
61.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
62.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
63.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
73
,
045112
(
2006
).
64.
M.
Sanati
,
R. C.
Albers
,
T.
Lookman
, and
A.
Saxena
,
Phys. Rev. B
88
,
024110
(
2013
).
65.
O.
Alsalmi
,
M.
Sanati
,
R. C.
Albers
,
T.
Lookman
, and
A.
Saxena
,
Phys. Rev. M
2
,
113601
(
2018
).
66.
I.
Nagy
,
A.
Arnau
, and
P. M.
Echenique
,
Phys. Rev. A
40
,
987
(
1989
).
67.
F.
Yubero
,
J. M.
Sanz
,
B.
Ramskov
, and
S.
Tougaard
,
Phys. Rev. B
53
,
9719
(
1996
).
68.
M.
Polak
, University of Wisconsin, private communication (2019).
69.
A. B.
Pippard
, “
Ultrasonic attenuation in metals
,”
Philos. Mag.
46
,
1104
(
1955
).
70.
H. K. A.
Nguyen
,
J.
Mankowski
,
J.
Dickens
,
A.
Neuber
, and
R. P.
Joshi
,
IEEE Trans. Plasma Sci.
47
,
1364
(
2019
).
71.
H. K. A.
Nguyen
,
J.
Mankowski
,
J. C.
Dickens
,
A.
Neuber
, and
R. P.
Joshi
,
AIP Adv.
8
,
015325
(
2018
).
72.
H.
Qiu
,
S.
Prasad
,
L.
Ludeking
,
R. P.
Joshi
, and
E.
Schamiloglu
,
J. Appl. Phys.
115
,
193303
(
2014
).
73.
H. M.
Polatoglou
,
M.
Methfessel
, and
M.
Scheffle
,
Phys. Rev. B
48
,
1877
(
1993
).
74.
P. O.
Gartland
,
S.
Berge
, and
B. J.
Slagsvold
,
Phys. Rev. Lett.
28
,
738
(
1972
).
75.
V.
Baglin
,
J.
Bojko
,
O.
Gröbner
,
B.
Henrist
,
N.
Hilleret
,
C.
Scheuerlein
, and
M.
Taborelli
, “The secondary electron yield of technical materials and its variation with surface treatments,” in Proceedings of EPAC, Vienna, Austria (CERN, 2000), pp. 217–221.
76.
Z. J.
Ding
,
H. M.
Li
,
X. D.
Tang
, and
R.
Shimizu
,
Appl. Phys. A
78
,
585
(
2004
).
77.
H. B.
Zhang
,
X. C.
Hu
,
R.
Wang
,
M.
Cao
,
N.
Zhang
, and
W.
Cui
,
Rev. Sci. Instrum.
83
,
066105
(
2012
).
78.
F.
Le Pimpec
,
R. E.
Kirby
,
F. K.
King
, and
M.
Pivi
,
Nucl. Instrum. Methods Phys. Res. A
564
,
44
(
2006
).
79.
J.
Yang
,
W. Z.
Cui
,
Y.
Li
,
G. B.
Xie
,
N.
Zhang
, and
R.
Wang
,
Appl. Surf. Sci.
382
,
88
(
2016
).
80.
X. C.
Hu
,
M.
Cao
, and
W. Z.
Cui
,
Micron
90
,
71
(
2016
).
81.
R. M.
Stern
and
H.
Taub
,
Phys. Rev. Lett.
20
,
1340
(
1968
).
82.
M.
Ye
,
Y. N.
He
,
S. G.
Hu
,
J.
Yang
,
R.
Wang
,
T. C.
Hu
,
W. B.
Peng
, and
W. Z.
Cui
,
J. Appl. Phys.
114
,
104905
(
2013
).
83.
M.
Pivi
,
F. K.
King
,
R. E.
Kirby
,
T. O.
Raubenheimer
,
G.
Stupakov
, and
F.
Le Pimpec
,
J. Appl. Phys.
104
,
104904
(
2008
).
84.
H. E.
Farnsworth
,
Phys. Rev.
34
,
679
(
1929
).
85.
M.
Ye
,
Y. N.
He
,
S. G.
Hu
,
R.
Wang
,
T. C.
Hu
,
J.
Yang
, and
W. Z.
Cui
,
J. Appl. Phys.
113
,
074904
(
2013
).
86.
C.
Swanson
and
I. D.
Kaganovich
,
J. Appl. Phys.
120
,
213302
(
2016
).
87.
M. Q.
Ding
,
M. G.
Huang
,
J. J.
Feng
,
G. D.
Bai
, and
T. C.
Yan
,
Appl. Surf. Sci.
255
,
2196
(
2008
).
88.
J.
Luo
,
P.
Tian
,
C. T.
Pan
,
A. W.
Robertson
,
J. H.
Warner
,
E. W.
Hill
, and
G. A. D.
Briggs
,
ACS Nano
5
,
1047
(
2011
).
You do not currently have access to this content.