In this paper, the stress-induced twin interface nucleation in single-crystalline NiMnGa alloys is studied through theoretical analyses and numerical simulations. First, the mechanical governing system for a single-crystalline NiMnGa sample is formulated, which contains the mechanical field equation and the twin interface movement criteria. To complete the governing system, the nucleations of twin interfaces in the NiMnGa sample under general mechanical loads are investigated. By considering the connection conditions of some physical quantities across a “fictitious” twin interface, the explicit expression of the configurational force on the twin interface is derived. Then, based on the twin interface movement criteria, a practical scheme for predicting the twin interface nucleation is proposed. This scheme can be integrated into the iterative numerical algorithm for solving the mechanical governing system. To demonstrate the efficiency of this scheme, some simulation results are presented for two typical deformations of a NiMnGa sample (i.e., the axial compression and the bending deformation), which show good consistency with the experimental results. By analyzing the evolution properties of the configurational forces on the possible nucleation interfaces, the mechanism responsible for twin interface nucleations under different loading conditions can be revealed. The results obtained in the current work would be helpful for the design of smart devices by utilizing NiMnGa alloys.

1.
K.
Ullakko
,
J. K.
Huang
,
C.
Kantner
,
R. C.
O’Handley
, and
V. V.
Kokorin
, “
Large magnetic-field-induced strains in Ni2MnGa single crystals
,”
Appl. Phys. Lett.
69
,
1966
1968
(
1996
).
2.
R.
Tickle
and
R. D.
James
, “
Magnetic and magnetomechanical properties of Ni2MnGa
,”
J. Magn. Magn. Mater.
195
,
627
638
(
1999
).
3.
O.
Heczko
,
A.
Sozinov
, and
K.
Ullakko
, “
Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy
,”
IEEE Trans. Magn.
36
,
3266
3268
(
2000
).
4.
S. J.
Murray
,
M.
Marioni
,
S. M.
Allen
,
R. C.
O’Handley
, and
T. A.
Lograsso
, “
6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga
,”
Appl. Phys. Lett.
77
,
886
888
(
2000
).
5.
A.
Sozinov
,
A. A.
Likhachev
,
N.
Lanska
, and
K.
Ullakko
, “
Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase
,”
Appl. Phys. Lett.
80
,
1746
1748
(
2002
).
6.
L.
Straka
,
V.
Novák
,
M.
Landa
, and
O.
Heczko
, “
Acoustic emission of Ni-Mn-Ga magnetic shape memory alloy in different straining modes
,”
Mater. Sci. Eng. A
374
,
263
269
(
2004
).
7.
P. J.
Webster
,
K. R. A.
Ziebeck
,
S. L.
Town
, and
M. S.
Peak
, “
Magnetic order and phase transformation in Ni2MnGa
,”
Philos. Mag. B
49
,
295
310
(
1984
).
8.
P.
Müllner
and
G.
Kostorz
, “
Microstructure of magnetic shape-memory alloys: Between magnetoelasticity and magnetoplasticity
,”
Mater. Sci. Forum
583
,
43
65
(
2008
).
9.
Y.
Ge
,
N.
Zárubová
,
Z.
Dlabáček
,
I.
Aaltio
,
O.
Söderberg
, and
S. P.
Hannula
, “
In-situ TEM straining of tetragonal martensite of Ni-Mn-Ga alloy
,”
ESOMAT
2009
,
04007
.
10.
Y. W.
Lai
, “
Microstructure and actuation dynamics of NiMnGa magnetic shape memory materials
,” Ph.D. thesis (
Technical University of Dresden
,
2009
).
11.
R. C.
Pond
,
B.
Muntifering
, and
P.
Müllner
, “
Deformation twinning in Ni2MnGa
,”
Acta Mater.
60
,
3976
3984
(
2012
).
12.
O.
Heczko
,
N.
Glavatska
,
K.
Ullakko
, and
V. G.
Gavriljuk
, “
Influence of magnetic field and stress on large magnetic shape memory effect in single crystalline Ni-Mn-Ga ferromagnetic alloy at room temperature
,”
Mater. Sci. Forum
373
,
341
344
(
2001
).
13.
H. E.
Karaca
,
I.
Karaman
,
B.
Basaran
,
Y. I.
Chumlyakov
, and
H. J.
Maier
, “
Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals
,”
Acta Mater.
54
,
233
245
(
2006
).
14.
L.
Straka
, “
Magnetic and magneto-mechanical properties of Ni-Mn-Ga magnetic shape memory alloys
,” Ph.D. thesis (
Helsinki University of Technology
,
2007
).
15.
P.
Müllner
,
V. A.
Chernenko
, and
G.
Kostorz
, “
Stress-induced twin rearrangement resulting in change of magnetization in a Ni-Mn-Ga ferromagnetic martensite
,”
Scr. Mater.
49
,
129
133
(
2003
).
16.
V. A.
Chernenko
, “
Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiment and modeling
,”
Phys. Rev. B
69
,
134410
(
2004
).
17.
L.
Straka
,
N.
Lanska
,
K.
Ullakko
, and
A.
Sozinov
, “
Twin microstructure dependent mechanical response in Ni-Mn-Ga single crystals
,”
Appl. Phys. Lett.
96
,
131903
(
2010
).
18.
L.
Straka
,
H.
Hänninen
,
N.
Lanska
, and
A.
Sozinov
, “
Twin interaction and large magnetoelasticity in Ni-Mn-Ga single crystals
,”
J. Appl. Phys.
109
,
063504
(
2011
).
19.
X.
Chen
,
Y. J.
He
, and
Z.
Moumni
, “
Twin boundary motion in NiMnGa single crystals under biaxial compression
,”
Mater. Lett.
90
,
72
75
(
2013
).
20.
A.
Smith
,
J.
Tellinen
,
P.
Müllner
, and
K.
Ullakko
, “
Controlling twin variant configuration in a constrained Ni-Mn-Ga sample using local magnetic fields
,”
Scr. Mater.
77
,
68
70
(
2014
).
21.
L.
Straka
,
H.
Hänninen
,
A.
Soroka
, and
A.
Sozinov
, “
Ni-Mn-Ga single crystals with very low twinning stress
,”
J. Phys. Conf. Ser.
303
,
012079
(
2011
).
22.
R.
Chulist
,
A.
Sozinov
,
L.
Straka
,
N.
Lanska
,
A.
Soroka
,
T.
Lippmann
,
C.-G.
Oertel
, and
W.
Skrotzki
, “
Diffraction study of bending-induced polysynthetic twins in 10 m modulated Ni-Mn-Ga martensite
,”
J. Appl. Phys.
112
,
063517
(
2012
).
23.
N. J.
Kucza
,
C. L.
Patrick
,
D. C.
Dunand
, and
P.
Müllner
, “
Magnetic-field-induced bending and straining of Ni-Mn-Ga single crystal beams with high aspect ratios
,”
Acta Mater.
95
,
284
290
(
2015
).
24.
R.
Chulist
,
L.
Straka
,
H.
Seiner
,
A.
Sozinov
,
N.
Schell
, and
T.
Tokarski
, “
Branching of twin boundaries in five-layered Ni-Mn-Ga bent single crystals
,”
Mater. Des.
171
,
107703
(
2019
).
25.
O. Z.
Pascan
,
Y. J.
He
,
Z.
Moumni
, and
W. H.
Zhang
, “
Temperature rise of high-frequency martensite reorientation via type II twin boundary motion in NiMnGa ferromagnetic shape memory alloy
,”
Scr. Mater.
104
,
71
74
(
2015
).
26.
S. B.
Zhang
,
X.
Chen
,
Z.
Moumni
, and
Y. J.
He
, “
Coexistence and compatibility of martensite reorientation and phase transformation in high-frequency magnetic-field-induced deformation of Ni-Mn-Ga single crystal
,”
Int. J. Plasticity
110
,
110
122
(
2018
).
27.
R. C.
O’Handley
, “
Model for strain and magnetization in magnetic shape-memory alloys
,”
J. Appl. Phys.
83
,
3263
3270
(
1998
).
28.
A. A.
Likhachev
and
K.
Ullakko
, “
Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy
,”
Phys. Lett. A
275
,
142
151
(
2000
).
29.
R. D.
James
, “
Configurational forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever
,”
Continuum Mech. Thermodyn.
14
,
55
86
(
2002
).
30.
X. Z.
Wang
and
F.
Li
, “
A kinetics model for martensite variants rearrangement in ferromagnetic shape memory alloys
,”
J. Appl. Phys.
108
,
113921
(
2010
).
31.
L.
Hirsinger
and
C.
Lexcellent
, “
Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni-Mn-Ga alloys
,”
J. Magn. Magn. Mater.
254–255
,
275
277
(
2003
),
32.
B.
Kiefer
and
D. C.
Lagoudas
, “
Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys
,”
Philos. Mag.
85
,
4289
4329
(
2005
).
33.
J.
Wang
and
P.
Steinmann
, “
A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys
,”
J. Mech. Phys. Solids
60
,
1179
1200
(
2012
).
34.
X.
Chen
,
Z.
Moumni
,
Y. J.
He
, and
W. H.
Zhang
, “
A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys
,”
J. Mech. Phys. Solids
64
,
249
286
(
2014
).
35.
D. H.
LaMaster
,
H. P.
Feigenbaum
,
C.
Ciocanel
, and
I. D.
Nelson
, “
A full 3D thermodynamic-based model for magnetic shape memory alloys
,”
J. Intell. Mater. Syst. Struct.
26
,
663
679
(
2014
).
36.
J.
Kiang
and
L. Y.
Tong
, “
Nonlinear magneto-mechanical finite element analysis of Ni-Mn-Ga single crystals
,”
Smart Mater. Struct.
19
,
015017
(
2010
).
37.
K.
Haldar
,
B.
Kiefer
, and
D. C.
Lagoudas
, “
Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples
,”
Philos. Mag.
91
,
4126
4157
(
2011
).
38.
J.
Wang
and
P.
Steinmann
, “
Finite element simulation of the magneto-mechanical response of a magnetic shape memory alloy sample
,”
Philos. Mag.
93
,
2630
2653
(
2013
).
39.
L. J.
Li
,
J. Y.
Li
,
Y. C.
Shu
,
H. Z.
Chen
, and
J. H.
Yen
, “
Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation
,”
Appl. Phys. Lett.
92
,
172504
(
2008
).
40.
P. P.
Wu
,
X. Q.
Ma
,
J. X.
Zhang
, and
L. Q.
Chen
, “
Phase-field simulations of stress-strain behavior in ferromagnetic shape memory alloy Ni2MnGa
,”
J. Appl. Phys.
104
,
073906
(
2008
).
41.
Y. M.
Jin
, “
Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation
,”
Appl. Phys. Lett.
94
,
062508
(
2009
).
42.
L. J.
Li
,
C. H.
Lei
,
Y. C.
Shu
, and
J. Y.
Li
, “
Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys
,”
Acta Mater.
59
,
2648
2655
(
2011
).
43.
Y. G.
Cui
,
J. F.
Wan
,
J. H.
Zhang
, and
Y. H.
Rong
, “
Kinetics, mechanism, and pathway of reorientation of multi-variants in Ni-Mn-Ga shape memory alloys under continuous compressive stress: Phase-field simulation
,”
J. Appl. Phys.
112
,
094908
(
2012
).
44.
C.
Mennerich
,
F.
Wendler
,
M.
Jainta
, and
B.
Nestler
, “
Rearrangement of martensitic variants in Ni2MnGa studied with the phase-field method
,”
Eur. Phys. J. B
86
,
171
(
2013
).
45.
Q.
Peng
,
J. J.
Huang
,
M. X.
Chen
, and
Q. P.
Sun
, “
Phase-field simulation of magnetic hysteresis and mechanically induced remanent magnetization rotation in Ni-Mn-Ga ferromagnetic shape memory alloy
,”
Scr. Mater.
127
,
49
53
(
2017
).
46.
J.
Wang
and
P.
Steinmann
, “
On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. I: Theoretical formulation
,”
Continuum Mech. Thermodyn.
26
,
563
592
(
2014
).
47.
J. D.
Eshelby
, “
The elastic energy-momentum tensor
,”
J. Elast.
5
,
321
335
(
1975
).
48.
J.
Wang
and
P.
Steinmann
, “
On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: Numerical algorithm
,”
Continuum Mech. Thermodyn.
28
,
669
698
(
2016
).
49.
J.
Wang
and
P.
Steinmann
, “
On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape-memory alloy sample. III: Magneto-mechanical behaviors
,”
Continuum Mech. Thermodyn.
28
,
885
913
(
2016
).
50.
J.
Wang
, “
Accurate evaluation of the configurational forces in single-crystalline NiMnGa alloys under mechanical loading conditions
,”
Acta Mater.
105
,
306
316
(
2016
).
51.
R.
Abeyaratne
, “
An admissibility condition for equilibrium shocks in finite elasticity
,”
J. Elast.
13
,
175
184
(
1983
).
52.
R.
Abeyaratne
and
J. K.
Knowles
, “
On the dissipative response due to discontinuous strains in bars of unstable elastic material
,”
Int. J. Solids Struct.
24
,
1021
1044
(
1988
).
53.
R.
Abeyaratne
and
J. K.
Knowles
, “
Equilibrium shocks in plane deformations of incompressible elastic materials
,”
J. Elast.
22
,
63
80
(
1989
).
54.
R.
Abeyaratne
and
J. K.
Knowles
, “
A continuum model of a thermoelastic solid capable of undergoing phase transitions
,”
J. Mech. Phys. Solids
41
,
541
571
(
1993
).
55.
Q.
Jiang
, “
On the modeling of thermo-mechanical phase transformations in solids
,”
J. Elast.
32
,
61
91
(
1993
).
56.
Q.
Jiang
, “
On the driving traction acting on a surface of discontinuity within a continuum in the presence of electromagnetic fields
,”
J. Elast.
34
,
1
21
(
1994
).
57.
R. D.
James
and
R.
Rizzoni
, “
Piecewise rigid body mechanics
,”
J. Nonlinear Sci.
13
,
65
114
(
2003
).
58.
V.
Stoilov
, “
A theoretical model of martensitic transformations in magnetic shape memory alloys: Model formulation and variant reorientation
,”
Acta Mater.
56
,
1001
1010
(
2008
).
59.
J. M.
Ball
and
R. D.
James
, “
Fine phase mixtures as minimizers of energy
,”
Arch. Ration. Mech. Anal.
100
,
13
52
(
1987
).
60.
J. M.
Ball
and
R. D.
James
, “
Proposed experimental tests of a theory of fine microstructure and the two-well problem
,”
Philos. Trans. R. Soc. B Biolog. Sci.
338
,
389
450
(
1992
).
You do not currently have access to this content.