The antimony sulphoiodide (SbSI) is considered a prospective and important ferroelectric material due to its unique properties below Curie temperature Tc. However, the fact that current practical applications require higher working temperatures has prompted new structural improvements that extend the ferroelectric state. In this ternary system, Tc is highly sensitive to any chemical modifications or stress. Therefore, one way to adjust the Tc is through selective substitution of the constituent elements. In this work, SbSI has been fractionally chlorine-substituted at the iodine site and examined using temperature-dependent x-ray diffraction and specific heat capacity methods. Although a considerable increase in Tc has been achieved, a more detailed analysis shows that the Tc increases with x from 0 to 0.2 and starts to decrease when x > 0.2. The maximum Tc increase in the range of x = 0–0.3 is ∼15.3%. The reverse behavior, from increase to decrease, is thoroughly discussed with reference to the previously published data on SbSI1-xClx compounds.

1.
S.
Surthi
,
S.
Kotru
, and
R. K.
Pandey
, “
SbSI films for ferroelectric memory applications
,”
Integr. Ferroelectr.
48
,
263
269
(
2002
).
2.
M.
Dutta
,
A. S.
Bhalla
, and
R.
Guo
, “
Directional dependence figure of merit analysis of piezoelectric materials
,”
Integr. Ferroelectr.
174
,
26
33
(
2016
).
3.
Y.
Purusothaman
,
N. R.
Alluri
,
A.
Chandrasekhar
, and
S.-J.
Kim
, “
Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound
,”
Nano Energy
50
,
256
265
(
2018
).
4.
B.
Toroń
,
P.
Szperlich
,
M.
Nowak
,
D.
Stróż
, and
T.
Rzychoń
, “
Novel piezoelectric paper based on SbSI nanowires
,”
Cellulose
25
,
7
15
(
2018
).
5.
K.
Mistewicz
,
M.
Nowak
,
D.
Stróż
, and
A.
Guiseppi-Elie
, “
Ferroelectric SbSI nanowires for ammonia detection at a low temperature
,”
Talanta
189
,
225
232
(
2018
).
6.
C.
Wang
,
M.
Zhang
,
Y.
Fang
,
G.
Chen
,
Q.
Li
,
X.
Sheng
,
X.
Xu
,
J.
Hui
,
Y.-Q.
Lan
,
M.
Fang
,
X.
Wang
,
X.
Wang
,
Z.
Dai
,
J.
Bao
, and
P.
Wang
, “
SbSI nanocrystals: An excellent visible light photocatalyst with efficient generation of singlet oxygen
,”
ACS Sustainable Chem. Eng.
6
,
12166
12175
(
2018
).
7.
T.
Muthusamy
and
A. J.
Bhattacharyya
, “
Antimony sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity
,”
RSC Adv.
6
,
105980
105987
(
2016
).
8.
R. E.
Brandt
,
J. R.
Poindexter
,
P.
Gorai
,
R. C.
Kurchin
,
R. L. Z.
Hoye
,
L.
Nienhaus
,
M. W. B.
Wilson
,
J. A.
Polizzotti
,
R.
Sereika
,
R.
Žaltauskas
,
L. C.
Lee
,
J. L.
MacManus-Driscoll
,
M.
Bawendi
,
V.
Stevanović
, and
T.
Buonassisi
, “
Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening
,”
Chem. Mater.
29
,
4667
4674
(
2017
).
9.
M.
Nakamura
,
H.
Hatada
,
Y.
Kaneko
,
N.
Ogawa
,
Y.
Tokura
, and
M.
Kawasaki
, “
Impact of electrodes on the extraction of shift current from a ferroelectric semiconductor SbSI
,”
Appl. Phys. Lett.
113
,
232901
(
2018
).
10.
M.
Sotome
,
M.
Nakamura
,
J.
Fujioka
,
M.
Ogino
,
Y.
Kaneko
,
T.
Morimoto
,
Y.
Zhang
,
M.
Kawasaki
,
N.
Nagaosa
,
Y.
Tokura
, and
N.
Ogawa
, “
Spectral dynamics of shift current in ferroelectric semiconductor SbSI
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
1929
1933
(
2019
).
11.
K.
Mistewicz
,
M.
Nowak
, and
D.
Stróż
, “
A ferroelectric-photovoltaic effect in SbSI nanowires
,”
Nanomaterials
9
,
580
(
2019
).
12.
T.
Inushima
, “
X-ray study of crystal structure and diffuse scattering spectra of ferroelectric SbSBr having pseudo-Jahn–Teller phase transition
,”
J. Phys. Chem. Solids
60
,
587
598
(
1999
).
13.
Y.
Porat
and
R. Y.
Ting
, “
The piezoelectric and dielectric properties of SbSI(Sb2S3)x composites
,”
Ferroelectrics
87
,
155
165
(
1988
).
14.
J. R.
Spann
,
P. F.
Becher
,
G.
Culbertson
, and
K.
Yon
, “
Development of textured antimony sulphoiodide
,”
J. Mater. Sci.
16
,
2819
2830
(
1981
).
15.
Y.
Porat
, “
The ferroelectric and piezoelectric properties of SbS1-xOxI
,”
Ferroelectrics
51
,
213
237
(
1983
).
16.
L.
Palaniappan
,
M.
Shanmugham
,
F. D.
Gnanam
, and
P.
Ramasamy
, “
Growth and electrical characterization of SbSI and SbSOI crystals
,”
J. Cryst. Growth
79
,
519
521
(
1986
).
17.
B.
Garbarz-Glos
and
J.
Grigas
, “
Modified SbSI electroceramics
,”
Ferroelectrics
393
,
38
43
(
2009
).
18.
B.
Garbarz-Glos
, “
Dielectric properties of SbSI modifed in phase transition region
,”
Ferroelectrics
292
,
137
143
(
2003
).
19.
J.
Grigas
,
Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials
(
Gordon & Breach Publisher, OPA
,
Amsterdam
,
1996
), p.
336
.
20.
Y.
Wang
,
Y.
Hu
,
Z.
Chen
,
Y.
Guo
,
D.
Wang
,
E. A.
Wertz
, and
J.
Shi
, “
Effect of strain on the Curie temperature and band structure of low-dimensional SbSI
,”
Appl. Phys. Lett.
112
,
183104
(
2018
).
21.
A.
Audzijonis
,
L.
Žigas
,
R.
Žaltauskas
, and
R.
Sereika
, “
Reflection and vibrational spectra of SbSCl0.1I0.9 crystals in the ferroelectric phase-transition region
,”
J. Phys. Chem. Solids
75
,
194
197
(
2014
).
22.
A.
Audzijonis
,
L.
Žigas
,
R.
Sereika
, and
R.
Žaltauskas
, “
Origin of ferroelectric phase transition in SbSClxI1-x mixed crystals
,”
Int. J. Mod. Phys. B
28
,
1450209
(
2014
).
23.
B. H.
Toby
and
R. B.
Von Dreele
, “
GSAS-II: The genesis of a modern open-source all-purpose crystallography software package
,”
J. Appl. Crystallogr.
46
,
544
549
(
2013
).
24.
R. A.
Groom
,
A.
Jacobs
,
M.
Cepeda
,
R.
Drummey
, and
S. E.
Latturner
, “
Structural and optical properties of Sb-substituted BiSI grown from sulfur/iodine flux
,”
Inorg. Chem.
56
,
12362
12368
(
2017
).
25.
C. R. A.
Catlow
and
A. M.
Stoneham
, “
Ionicity in solids
,”
J. Phys. C Solid State Phys.
16
,
4321
4338
(
1983
).
26.
J. A.
Dean
,
Lange's Handbook of Chemistry
, 15th ed. (
McGraw-Hill, Inc.
,
1999
).
27.
E.
Fatuzzo
,
G.
Harbeke
,
W. J.
Merz
,
R.
Nitsche
,
H.
Roetschi
, and
W.
Ruppel
, “
Ferroelectricity in SbSI
,”
Phys. Rev.
127
,
2036
2037
(
1962
).
28.
K. R.
Rao
and
S. L.
Chaplot
, “
Dynamics of paraelectric and ferroelectric SbSI
,”
Phys. Status Solidi B
129
,
471
482
(
1985
).
29.
A.
Audzijonis
,
R.
Rėza
,
R.
Žaltauskas
,
L.
Žigas
,
R.
Sereika
,
Č.
Paškevič
, and
A.
Pauliukas
, “
Spectroscopic ellipsometry studies of ferroelectric SbSexS1−xI crystals
,”
Ferroelectrics
366
,
45
54
(
2008
).
30.
A.
Audizijonis
and
R.
Sereika
, “
On the heat capacities of SbSI and SbSBr
,”
Ferroelectr. Lett.
41
,
51
55
(
2014
).
31.
S.
Stokka
,
K.
Fossheim
, and
S.
Ziolkiewicz
, “
Specific heat at a first-order phase transition: SbSI
,”
Phys. Rev. B
24
,
2807
2811
(
1981
).
32.
G. A.
Samara
, “
Effects of pressure on the dielectric properties of and the vanishing of the ferroelectricity in SbSI
,”
Ferroelectrics
9
,
209
219
(
1975
).
33.
M. K.
Teng
,
J. F.
Vittori
,
M.
Massot
,
S.
Ziolkewicz
, and
A.
Polian
, “
Raman scattering study of SbSBr at high pressure
,”
Phys. Rev. B
39
,
7585
7589
(
1989
).
You do not currently have access to this content.