Stoichiometric gallium oxide sulfide Ga2(O1 − xSx)3 thin-film alloys were synthesized by pulsed-laser deposition with x ≤ 0.35. All deposited Ga2(O1 − xSx)3 films were found to be amorphous. Despite the amorphous structure, the films have a well-defined, room-temperature optical bandgap tunable from 5.0 eV down to 3.0 eV. The optical absorption data are interpreted using a modified valence-band anticrossing model that is applicable for highly mismatched alloys. The model provides a quantitative method to more accurately determine the bandgap as well as an insight into how the band edges are changing with composition. The observed large reduction in energy bandgap with a small sulfur ratio arises from the anticrossing interaction between the valence band of Ga2O3 and the localized sulfur level at 1.0 eV above the Ga2O3 valence-band maximum.

1.
H.
Amano
,
Y.
Baines
,
E.
Beam
,
M.
Borga
,
T.
Bouchet
,
P. R.
Chalker
,
M.
Charles
,
K. J.
Chen
,
N.
Chowdhury
,
R.
Chu
,
C.
De Santi
,
M. M.
De Souza
,
S.
Decoutere
,
L.
Di Cioccio
,
B.
Eckardt
,
T.
Egawa
,
P.
Fay
,
J. J.
Freedsman
,
L.
Guido
,
O.
Häberlen
,
G.
Haynes
,
T.
Heckel
,
D.
Hemakumara
,
P.
Houston
,
J.
Hu
,
M.
Hua
,
Q.
Huang
,
A.
Huang
,
S.
Jiang
,
H.
Kawai
,
D.
Kinzer
,
M.
Kuball
,
A.
Kumar
,
K. B.
Lee
,
X.
Li
,
D.
Marcon
,
M.
März
,
R.
McCarthy
,
G.
Meneghesso
,
M.
Meneghini
,
E.
Morvan
,
A.
Nakajima
,
E. M. S.
Narayanan
,
S.
Oliver
,
T.
Palacios
,
D.
Piedra
,
M.
Plissonnier
,
R.
Reddy
,
M.
Sun
,
I.
Thayne
,
A.
Torres
,
N.
Trivellin
,
V.
Unni
,
M. J.
Uren
,
M.
Van Hove
,
D. J.
Wallis
,
J.
Wang
,
J.
Xie
,
S.
Yagi
,
S.
Yang
,
C.
Youtsey
,
R.
Yu
,
E.
Zanoni
,
S.
Zeltner
, and
Y.
Zhang
, “
The 2018 GaN power electronics roadmap
,”
J. Phys. D Appl. Phys.
51
(
16
),
163001
(
2018
).
2.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
(
1
),
011301
(
2018
).
3.
M.
Higashiwaki
and
G. H.
Jessen
, “
Guest editorial: The dawn of gallium oxide microelectronics
,”
Appl. Phys. Lett.
112
(
6
),
060401
(
2018
).
4.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
, “
Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS
,”
J. Appl. Phys.
124
(
22
),
220901
(
2018
).
5.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N. P.
Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
(
1
),
1600501
(
2018
).
6.
M.
Orita
,
H.
Hiramatsu
,
H.
Ohta
, and
M.
Hirano
,
H.
Hosono
, “
Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures
,”
Thin Solid Films
411
,
134
139
(
2002
).
7.
T.
Onuma
,
S.
Saito
,
K.
Sasaki
,
T.
Masui
,
S.
Muller
,
T.
Honda
, and
M.
Higashiwaki
, “
Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy
,”
Jpn. J. Appl. Phys.
54
,
112601
(
2015
).
8.
F. B.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
, and
Q. X.
Guo
, “
Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition
,”
J. Cryst. Growth
387
,
96
100
(
2014
).
9.
R. J.
Kaplar
,
A. A.
Allerman
,
A.
Armstrong
,
M. H.
Crawford
,
J. R.
Dickerson
,
A. J.
Fischer
,
A. G.
Baca
, and
E. A.
Douglas
, “
Review—Ultra-wide-bandgap AlGaN power electronic devices
,”
ECS J. Solid State Sci. Technol.
6
(
6
),
Q3061
Q3066
(
2017
).
10.
S.
Nakagomi
,
Y.
Kokubun
, and
Z.-C.
Feng
, “
Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate
,”
J. Cryst. Growth
349
(
1
),
12
18
(
2012
).
11.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
(
14
),
142106
(
2010
).
12.
B. J.
Baliga
, “
Gallium nitride devices for power electronic applications
,”
Semicond. Sci. Technol.
28
,
074011
(
2013
).
13.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
MBE grown Ga2O3 and its power device applications
,”
J. Cryst. Growth
378
,
591
595
(
2013
).
14.
G.
Wagner
,
M.
Baldini
,
D.
Gogova
,
M.
Schmidbauer
,
R.
Schewski
,
M.
Albrecht
,
Z.
Galazka
,
D.
Klimm
, and
R.
Fornari
, “
Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy
,”
Phys. Status Solidi A
211
(
1
),
27
33
(
2014
).
15.
Y.
Lv
,
J.
Ma
,
W.
Mi
,
C.
Luan
,
Z.
Zhu
, and
H.
Xiao
, “
Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique
,”
Vacuum
86
(
12
),
1850
1854
(
2012
).
16.
F.
Mezzadri
,
G.
Calestani
,
F.
Boschi
,
D.
Delmonte
,
M.
Bosi
, and
R.
Fornari
, “
Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire
,”
Inorg. Chem.
55
(
22
),
12079
12084
(
2016
).
17.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
, “
Deep-ultraviolet transparent conductive β-Ga2O3 thin films
,”
Appl. Phys. Lett.
77
(
25
),
4166
4168
(
2000
).
18.
R.
Wakabayashi
,
T.
Oshima
,
M.
Hattori
,
K.
Sasaki
,
T.
Masui
,
A.
Kuramata
,
S.
Yamakoshi
,
K.
Yoshimatsu
, and
A.
Ohtomo
, “
Oxygen-radical-assisted pulsed-laser deposition of β-Ga2O3 and β-(AlxGa1−x)2O3 films
,”
J. Cryst. Growth
424
(
C
),
77
79
(
2015
).
19.
K. D.
Leedy
,
K. D.
Chabak
,
V.
Vasilyev
,
D. C.
Look
,
J. J.
Boeckl
,
J. L.
Brown
,
S. E.
Tetlak
,
A. J.
Green
,
N. A.
Moser
,
A.
Crespo
,
D. B.
Thomson
,
R. C.
Fitch
,
J. P.
McCandless
, and
G. H.
Jessen
, “
Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition
,”
Appl. Phys. Lett.
111
(
1
),
012103
(
2017
).
20.
S.-A.
Lee
,
J.-Y.
Hwang
,
J.-P.
Kim
,
S.-Y.
Jeong
, and
C.-R.
Cho
, “
Dielectric characterization of transparent epitaxial Ga2O3 thin film on n-GaN∕Al2O3 prepared by pulsed laser deposition
,”
Appl. Phys. Lett.
89
(
18
),
182906
(
2006
).
21.
E. G.
Víllora
,
K.
Shimamura
,
K.
Kitamura
, and
K.
Aoki
, “
RF-plasma-assisted molecular-beam epitaxy of β-Ga2O3
,”
Appl. Phys. Lett.
88
(
3
),
031105
(
2006
).
22.
T.
Oshima
,
T.
Okuno
, and
S.
Fujita
, “
Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors
,”
Jpn. J. Appl. Phys.
46
(
11
),
7217
7220
(
2007
).
23.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Víllora
,
K.
Shimamura
, and
S.
Yamakoshi
, “
Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy
,”
Appl. Phys. Express
5
(
3
),
035502
(
2012
).
24.
S. W.
Kaun
,
F.
Wu
, and
J. S.
Speck
, “
β-(AlxGa1−x)2O3/Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy
,”
J. Vac. Sci. Technol. A
33
(
4
),
041508
(
2015
).
25.
P.
Vogt
and
O.
Bierwagen
, “
Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption
,”
Appl. Phys. Lett.
108
(
7
),
072101
(
2016
).
26.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
(
1
),
011301
(
2018
).
27.
M. J.
Tadjer
,
J. L.
Lyons
,
N.
Nepal
,
J. J. A.
Freitas
,
A. D.
Koehler
, and
G. M.
Foster
, “
Editors’ choice—Review—Theory and characterization of doping and defects in β-Ga2O3
,”
ECS J. Solid State Sci. Technol.
8
(
7
),
Q3187
Q3194
(
2019
).
28.
F.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
,
M.
Arita
, and
Q.
Guo
, “
Wide bandgap engineering of (AlGa)2O3 films
,”
Appl. Phys. Lett.
105
(
16
),
162107
(
2014
).
29.
H.
Okumura
,
Y.
Kato
,
T.
Oshima
, and
T.
Palacios
, “
Demonstration of lateral field-effect transistors using Sn-doped β-(AlGa)2O3 (010)
,”
Jpn. J. Appl. Phys.
58
,
SBBD12
(
2019
).
30.
J. R.
Weber
,
D.
Steiauf
,
J. B.
Varley
,
A.
Janotti
, and
C. G.
Van de Walle
, “
(Inxga1−x)2O3 alloys for transparent electronics
,”
Phys. Rev. B
92
,
085206
(
2015
).
31.
H.
Von Wenckstern
,
D.
Splith
,
A.
Werner
,
S.
Muller
, and
M.
Grundmann
, “
Properties of Schottky barrier diodes on (InxGa1−x)2O3 for 0.01 ≤ x ≤ 0.85 determined by a combinatorial approach
,”
ACS Comb. Sci.
17
(
12
),
710
715
(
2015
).
32.
K. M.
Yu
,
S. V.
Novikov
,
R.
Broesler
,
Z.
Liliental-Weber
,
A. X.
Levander
,
V. M.
Kao
,
O. D.
Dubon
,
J.
Wu
,
W.
Walukiewicz
, and
C. T.
Foxon
, “
Low gap amorphous GaN1−xAsx alloys grown on glass substrate
,”
Appl. Phys. Lett.
97
(
10
),
101906
(
2010
).
33.
K. M.
Yu
,
S. V.
Novikov
,
R.
Broesler
,
I. N.
Demchenko
,
J. D.
Denlinger
,
Z.
Liliental-Weber
,
F.
Luckert
,
R. W.
Martin
,
W.
Walukiewicz
, and
C. T.
Foxon
, “
Highly mismatched crystalline and amorphous GaN1−xAsx alloys in the whole composition range
,”
J. Appl. Phys.
106
(
10
),
103709
(
2009
).
34.
A. M.
Diamond
,
L.
Corbellini
,
K. R.
Balasubramaniam
,
S.
Chen
,
S.
Wang
,
T. S.
Matthews
,
L.-W.
Wang
,
R.
Ramesh
, and
J. W.
Ager
, “
Copper-alloyed ZnS as a p-type transparent conducting material
,”
Phys. Status Solidi A
209
(
11
),
2101
2107
(
2012
).
35.
N.
Segercrantz
,
K. M.
Yu
,
M.
Ting
,
W. L.
Sarney
,
S. P.
Svensson
,
S. V.
Novikov
,
C. T.
Foxon
, and
W.
Walukiewicz
, “
Electronic band structure of highly mismatched GaN1−xSbx alloys in a broad composition range
,”
Appl. Phys. Lett.
107
(
14
),
142104
(
2015
).
36.
M.
Ting
,
K. M.
Yu
,
M.
Jaquez
,
I. D.
Sharp
,
Y.
Ye
,
N.
Segercrantz
,
R.
Greif
,
S. S.
Mao
,
C. P.
Liu
, and
W.
Walukiewicz
, “
ZnO1−xTex highly mismatched alloys beyond the dilute alloy limit: Synthesis and electronic band structure
,”
J. Appl. Phys.
125
(
15
),
155702
(
2019
).
37.
M. A.
Mayer
,
D. T.
Speaks
,
K. M.
Yu
,
S. S.
Mao
,
E. E.
Haller
, and
W.
Walukiewicz
,
Band structure engineering of ZnO1−xSex alloys
,”
Appl. Phys. Lett.
97
(
2
),
022104
(
2010
).
38.
M.
Ting
,
R.
dos Reis
,
M.
Jaquez
,
O. D.
Dubon
,
S. S.
Mao
,
K. M.
Yu
, and
W.
Walukiewicz
, “
Electronic band structure of ZnO-rich highly mismatched ZnO1−xTex alloys
,”
Appl. Phys. Lett.
106
(
9
),
092101
(
2015
).
39.
M.
Jaquez
,
K. M.
Yu
,
M.
Ting
,
M.
Hettick
,
J. F.
Sánchez-Royo
,
M.
Wełna
,
A.
Javey
,
O. D.
Dubon
, and
W.
Walukiewicz
, “
Growth and characterization of ZnO1−xSx highly mismatched alloys over the entire composition
,”
J. Appl. Phys.
118
(
21
),
215702
(
2015
).
40.
B. K.
Meyer
,
A.
Polity
,
B.
Farangis
,
Y.
He
,
D.
Hasselkamp
,
T.
Krämer
, and
C.
Wang
, “
Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering
,”
Appl. Phys. Lett.
85
(
21
),
4929
4931
(
2004
).
41.
W.
Wei
,
Z.
Qin
,
S.
Fan
,
Z.
Li
,
K.
Shi
,
Q.
Zhu
, and
G.
Zhang
, “
Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy
,”
Nanoscale Res. Lett.
7
(
1
),
562
(
2012
).
42.
S. E.
Al Garni
and
A. F.
Qasrawi
, “
Design and characterization of the Ge/Ga2S3 heterojunction
,”
J. Electron. Mater.
46
(
8
),
4848
4856
(
2017
).
43.
J.
Wu
,
W.
Shan
, and
W.
Walukiewicz
, “
Band anticrossing in highly mismatched III V semiconductor alloys
,”
Semicond. Sci. Technol.
17
(
8
),
860
869
(
2002
).
44.
W.
Walukiewicz
, “
Amphoteric native defects in semiconductors
,”
Appl. Phys. Lett.
54
(
21
),
2094
2096
(
1989
).
45.
K. M.
Yu
,
W.
Walukiewicz
,
W.
Shan
,
J. W. I.
Ager
,
J.
Wu
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
, and
J. M.
Olson
, “
Nitrogen-induced increase of the maximum electron concentration in group III-N-V alloys
,”
Phys. Rev. B
61
(
2
),
R13337
R13340
(
2000
).
You do not currently have access to this content.