We present a polarization-dependent pure transverse-optic (TO) Raman study of high-quality CdxZn1−xSe single crystals with zincblende (cubic) structures (x0.3) covering both the phonon and phonon-polariton variants of the TO modes, using suitable backward and near-forward scattering geometries, respectively. Insight into the native phonon regime of the phonon-polaritons is obtained at intermediate composition of the random crystal (x=0.5,0.3) and at the (Cd,Zn)-dilute limits (x0.1; using prototype impurity motifs) by applying ab initio codes to large supercells (64–216 atoms), with special attention to both the Raman intensities and the phonon frequencies. The experimental (Raman) and theoretical (ab initio) results converge onto a percolation-type three-phonon [1×(Cd-Se),2×(Zn-Se)] pattern for CdxZn1−xSe. On the practical side, the interplay between the oscillator strengths of the two Zn-Se Raman modes is used to diagnose a pronounced trend toward local clustering in the studied crystals, presumably an early sign of the composition-induced zincblende ⇿ wurtzite structural transition (x0.3). The deviation from the ideal Zn ⇿ Cd random substitution is estimated by working out a zincblende-version of the percolation model equipped with a relevant order parameter κ. The model is based on a sensitivity of the Zn-Se vibration to its local environment at the second-neighbor scale, independently supported by ab initio calculation of the Raman spectra in their dependence on κ (adjusted by simulated annealing).

1.
S.
Adachi
and
T.
Taguchi
,
Phys. Rev. B
43
,
9569
(
1991
).
2.
S.
Niromiya
and
S.
Adachi
,
J. Appl. Phys.
78
,
4681
(
1995
).
3.
K.
Suzuki
and
S.
Adachi
,
J. Appl. Phys.
83
,
1018
(
1998
).
4.
S. Y.
Wang
,
Y.
Kawakami
,
J.
Simpson
,
H.
Stewart
,
K. A.
Prior
, and
B. C.
Cavenett
,
Appl. Phys. Lett.
62
,
1715
(
1993
).
5.
Y. D.
Kim
,
M. V.
Klein
,
S. F.
Ren
,
Y. C.
Chang
,
H.
Luo
,
N.
Samarth
, and
J. K.
Furdyna
,
Phys. Rev. B
49
,
7262
(
1994
).
6.
C.
Jordan
,
J. F.
Donegan
,
J.
Hegarty
,
B. J.
Roycroft
,
S.
Taniguchi
,
T.
Hino
,
E.
Kato
,
N.
Noguchi
, and
A.
Ishibashi
,
Appl. Phys. Lett.
74
,
3359
(
1999
).
7.
N.
Samarth
,
H.
Luo
,
J. K.
Furdyna
,
R. G.
Alonso
,
Y. R.
Lee
,
A. K.
Ramdas
,
S. B.
Qadri
, and
N.
Otsuka
,
Appl. Phys. Lett.
56
,
1163
(
1990
).
8.
Z. H.
Huang
,
S. D.
Liang
,
C. Y.
Chen
, and
D. L.
Lin
,
Solid State Commun.
104
,
281
(
1997
).
9.
Z. Z.
Guo
,
X. X.
Liang
, and
S. L.
Ban
,
Phys. Status Solidi B
238
,
173
(
2003
).
10.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
, 4th ed. (
Springer-Verlag
,
Heidelberg
,
2010
), Chap. 3, pp.
107
158
.
11.
N. E.
Christensen
,
S.
Satpathy
, and
Z.
Pawlowska
,
Phys. Rev. B
36
,
1032
(
1987
).
12.
A. S.
Nasibov
,
Y. V.
Korostelin
,
P. V.
Shapkin
,
L. G.
Suslina
,
D. L.
Fedorov
, and
L. S.
Markov
,
Solid State Commun.
71
,
867
(
1989
).
13.
S. P.
Kozyrev
,
Phys. Solid State
51
,
1004
(
2009
).
14.
B.
Hennion
,
F.
Moussa
,
G.
Pepy
, and
K.
Kunc
,
Phys. Lett. A
36
,
376
(
1971
).
15.
Z.
Tian
,
M.
Li
,
Z.
Ren
,
H.
Ma
,
A.
Alatas
,
S. D.
Wilson
, and
J.
Li
,
J. Phys. Condens. Matter
27
,
375403
(
2015
).
16.
W. S.
Li
,
Z. X.
Shen
,
D. Z.
Shen
, and
X. W.
Fan
,
J. Appl. Phys.
84
,
5198
(
1998
).
17.
W.
Meredith
,
G.
Horsburgh
,
G. D.
Brownlie
,
K. A.
Prior
,
B. C.
Cavenett
,
W.
Rothwell
, and
A. J.
Dann
,
J. Cryst. Growth
159
,
103
(
1996
).
18.
S. P.
Kozyrev
,
Phys. Solid State
50
,
1117
(
2008
).
19.
O.
Brafman
,
Solid State Commun.
11
,
447
(
1972
).
20.
I. F.
Chang
and
S. S.
Mitra
,
Phys. Rev.
172
,
924
(
1968
).
21.
M. Y.
Valakh
,
M. P.
Lisitsa
,
V. I.
Sidorenko
, and
G. N.
Polissky
,
Phys. Lett.
78
,
115
(
1980
).
22.
M. Y.
Valakh
,
A. P.
Litvinchuck
,
G. S.
Pekar
, and
G. N.
Polysskii
,
Phys. Status Solidi B
104
,
743
(
1981
).
23.
M. Y.
Valakh
,
M. P.
Lisitsa
,
G. S.
Pekar
,
G. N.
Polysskii
,
V. I.
Sidorenko
, and
A. M.
Yaremko
,
Phys. Status Solidi B
113
,
635
(
1982
).
24.
R. G.
Alonso
,
E.-K.
Suh
,
A. K.
Ramdas
,
N.
Samarth
,
H.
Luo
, and
J. K.
Furdyna
,
Phys. Rev. B
40
,
3720
(
1989
).
25.
J.
Avendaño-López
,
F. L.
Castillo-Alvarado
,
A.
Escamilla-Esquivel
,
G.
Contreras-Puente
,
J.
Ortiz-López
, and
O.
Zelaya-Angel
,
Solid State Commun.
100
,
33
(
1996
).
26.
L. K.
Vodop’yanov
,
S. P.
Kozyrev
, and
Y. G.
Sadof’ev
,
Phys. Solid State
41
,
893
(
1999
).
27.
E. A.
Vinogradov
,
B. N.
Mavrin
, and
L. K.
Vodop’yanov
,
J. Exp. Theor. Phys.
99
,
749
(
2004
).
28.
L. K.
Vodopyanov
,
E. A.
Vinogradov
,
V. S.
Vinogradov
,
I. V.
Kucherenko
,
B. N.
Mavrin
,
N. N.
Novikova
, and
P. V.
Shapkin
,
Phys. Status Solidi C
1
,
3162
(
2004
).
29.
S. P.
Kozyrev
,
Semiconductors
48
,
1261
(
2014
).
30.
O.
Pagès
,
A. V.
Postnikov
,
M.
Kassem
,
A.
Chafi
,
A.
Nassour
, and
S.
Doyen
,
Phys. Rev. B
77
,
125208
(
2008
).
31.
S.
Eckner
,
K.
Ritter
,
P.
Schöppe
,
E.
Haubold
,
E.
Eckner
,
J.
Rensberg
,
R.
Röder
,
M. C.
Ridgway
, and
C. S.
Schnohr
,
Phys. Rev. B
97
,
195202
(
2018
).
32.
S.
Eckner
,
A.
Johannes
,
M.
Gnauck
,
H.
Kämmer
,
T.
Steinbach
,
S.
Schönherr
,
R.
Chernikov
,
E.
Welter
,
M. C.
Ridgway
, and
C. S.
Schnohr
,
Europhys. Lett.
126
,
36002
(
2019
).
33.
D. W.
Taylor
, Optical Properties of Mixed Crystals, edited by R. J. Elliott and I. P. Ipatova (Elsevier Science Publishers B.V., 1988), Chap. 2, p. 35 (cf. Table 3, p. 78).
34.
S.
Adachi
,
Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors
(
John Wiley & Sons, Inc.
,
Chichester
,
2009
), Chap. 4, p.
100
.
35.
E.
Jahne
,
Phys. Status Solidi B
74
,
275
(
1976
).
36.
E.
Jahne
,
Phys. Status Solidi B
75
,
221
(
1976
).
37.
O.
Pagès
,
M.
Ajjoun
,
T.
Tite
,
D.
Bormann
,
E.
Tournié
, and
K. C.
Rustagi
,
Phys. Rev. B
70
,
155319
(
2004
).
38.
R.
Hajj Hussein
,
O.
Pagès
,
S.
Doyen-Schuler
,
H.
Dicko
,
A. V.
Postnikov
,
F.
Firszt
,
A.
Marasek
,
W.
Paszkowicz
,
A.
Maillard
,
L.
Broch
, and
O.
Gorochov
,
J. Alloys Compd.
644
,
704
(
2015
).
39.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys. Condens. Matter
14
,
2745
(
2002
).
40.
R.
Jones
and
P. R.
Briddon
, “Semiconductors and semimetals,” in Identification of Defects in Semiconductors (Academic Press, Boston, 1988), Vol. 51A, Chap. 6.
41.
P. R.
Briddon
and
R.
Jones
,
Phys. Status Solidi B
217
,
131
(
2000
).
42.
M. J.
Rayson
and
P. R.
Briddon
,
Comput. Phys. Commun.
178
,
128
(
2008
).
43.
F.
Firszt
,
A. A.
Wronkowska
,
A.
Wronkowski
,
S.
Łęgowski
,
A.
Marasek
,
H.
Męczyńska
,
M.
Pawlak
,
W.
Paszkowicz
,
K.
Strzałkowski
, and
A. J.
Zakrzewski
,
Cryst. Res. Technol.
40
,
386
(
2005
).
44.
F. C.
Peiris
,
S.
Lee
,
U.
Bindley
, and
J. K.
Furdyna
,
J. Appl. Phys.
86
,
918
(
1999
).
45.
A.
Mascarenhas
,
Spontaneous Ordering in Semiconductor Alloys
(
Kluwer Academic, Plenum Publishers
,
New York
,
2002
).
46.
J.
Geurts
,
Surf. Sci. Rep.
18
,
1
(
1993
).
47.
H.
Dicko
,
O.
Pagès
,
F.
Firszt
,
K.
Strałkowski
,
A.
Maillard
,
C.
Jobard
, and
L.
Broch
,
J. Appl. Phys.
120
,
185702
(
2016
).
48.
C. A.
Arguello
,
D. L.
Rousseau
, and
S. P. S.
Porto
,
Phys. Rev.
181
,
1351
(
1969
).
49.
J.
Groenen
,
R.
Carles
,
G.
Landa
,
C.
Guerret-Piécourt
,
C.
Fontaine
, and
M.
Gendry
,
Phys. Rev. B
58
,
10452
(
1998
).
50.
M.
Cardona
, Light Scattering in Solids II, Topics in Applied Physics Vol. 50, edited by M. Cardona and G. Günterodt (Springer, Berlin, 1982), Chap. 2, p. 62.
51.
R.
Cuscó
,
V.
Consonni
,
E.
Bellet-Amalric
,
R.
André
, and
L.
Artús
,
Phys. Status Solidi Rapid Res. Lett.
11
,
1700006
(
2017
).
52.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
53.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
54.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
55.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
56.
F.
Birch
,
Phys. Rev.
71
,
809
(
1947
).
57.
B.
Jobst
,
D.
Hommel
,
U.
Lunz
,
T.
Gerhard
, and
G.
Landwehr
,
Appl. Phys. Lett.
69
,
97
(
1996
).
58.
S.
Ves
,
K.
Strössner
,
N. E.
Christensen
,
C. K.
Kim
, and
M.
Cardona
,
Solid State Commun.
56
,
479
(
1985
).
59.
S.
Baroni
,
S.
de Gironcoli
, and
P.
Giannozzi
,
Phys. Rev. Lett.
65
,
84
(
1990
).
60.
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), Vol. 17.
61.
S.
de Gironcoli
,
Phys. Rev. B
46
,
2412
(
1992
).
62.
Y.-S.
Lim
,
S.-C.
Yoon
,
K.-J.
Yee
,
Y.-H.
Ahn
,
E.
Oh
, and
J.-H.
Lee
,
Appl. Phys. Lett.
82
,
2446
(
2003
).
63.
E.
Deligoz
,
K.
Colakoglu
, and
Y.
Ciftci
,
Physica B
373
,
124
(
2006
).
64.
S.
Kirkpatrick
,
C. D.
Gelatt
, Jr.
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
65.
V. J. B.
Torres
,
R.
Hajj Hussein
,
O.
Pagès
, and
M. J.
Rayson
,
J. Appl. Phys.
121
,
085704
(
2017
).
66.
H. W.
Verleur
and
A. S.
Barker
, Jr.
,
Phys. Rev.
149
,
715
(
1966
).
67.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
68.
S. H.
Wei
,
L. G.
Ferreira
,
J. E.
Bernard
, and
A.
Zunger
,
Phys. Rev. B
42
,
9622
(
1990
).
69.
B. D.
Rajput
and
D. A.
Browne
,
Phys. Rev. B
53
,
9052
(
1996
).
70.
C.
Vèrié
,
J. Cryst. Growth
184/185
,
1061
(
1998
).
71.
H.
Dicko
,
O.
Pagès
,
R.
Hajj Hussein
,
G. K.
Pradhan
,
C.
Narayana
,
F.
Firszt
,
A.
Marasek
,
W.
Paszkowicz
,
A.
Maillard
,
C.
Jobard
,
L.
Broch
, and
F.
El Hajj Hassan
,
J. Raman Spectrosc.
47
,
357
(
2016
).
72.
H.
Dicko
,
O.
Pagès
,
M. B.
Shoker
,
F.
Firszt
,
K.
Strzałkowski
,
A.
Maillard
,
A.
Polian
,
Y.
Battie
,
L.
Broch
,
A.
En Naciri
,
A. V.
Postnikov
,
W.
Paszkowicz
, and
J.-P.
Itié
,
Sci. Rep.
9
,
7817
(
2019
).
73.
Independently achievable by solving numerically the characteristic dispersion of a TO mode, i.e., εr(ω,x)=(ωqc)2.
74.
C. H.
Henry
and
J. J.
Hopfield
,
Phys. Rev. Lett.
15
,
964
(
1965
).
75.
O.
Pagès
,
R.
Hajj Hussein
, and
V. J. B.
Torres
,
J. Appl. Phys.
114
,
033513
(
2013
).
76.
O.
Pagès
,
A. V.
Postnikov
,
A.
Chafi
,
D.
Bormann
,
P.
Simon
,
F.
Glas
,
F.
Firszt
,
W.
Paszkowicz
, and
E.
Tournié
,
Eur. Phys. J. B
73
,
461
(
2010
).
77.
L.
Bellaiche
and
A.
Zunger
,
Phys. Rev. B
57
,
4425
(
1998
).

Supplementary Material

You do not currently have access to this content.