In this paper, a cascaded retrodirective metasurface is designed and demonstrated to operate simultaneously at a wide range of incident angles from 30° to 10° and 10° to 30°. It is based on the design of several retrodirective super-cells following the generalized Snell’s law of reflection, where each super-cell is designed to redirect an incoming wave back in the same direction with high efficiency. This metasurface is a very good candidate as a retroreflector for radar cross-section (RCS) enhancement of targets with poor backscattering. Retrodirective topologies have been a subject of interest, and several engineered topologies exist, such as the corner dihedral. Despite their good performances at a range of incident angles, their 3-dimensional bulky structure makes them hard to implement for different applications and they do not address extreme incident angles. The metasurface proposed can be a complementary solution to existing topologies for addressing extreme oblique incident angles while being more compact due to its two-dimensional subwavelength structure design. The monostatic radar cross-section (RCS) performance of the designed metasurface of dimensions 8.163×56.23 cm2 has been compared to that of a conventional corner dihedral of dimensions 8×15.5×7.75 cm3, and a gain of up to 50 dB of monostatic radar cross section (RCS) in the ranges 30° to 20° and 20° to 30° was obtained. Comparable performances are observed in the ranges 20° to 10° and 10° to 20° between the designed metasurface and the corner dihedral. Experimental results are shown to be in good agreement with simulation results.

1.
H.-T.
Chen
,
A. J.
Taylor
, and
N.
Yu
,
Rep. Prog. Phys.
79
,
076401
(
2016
).
2.
S.
Sun
,
K.-Y.
Yang
,
C.-M.
Wang
,
T.-K.
Juan
,
W. T.
Chen
,
C. Y.
Liao
,
Q.
He
,
S.
Xiao
,
W.-T.
Kung
,
G.-Y.
Guo
,
L.
Zhou
, and
D. P.
Tsai
,
Nano Lett.
12
,
6223
(
2012
).
3.
L.
Zhang
,
S.
Mei
,
K.
Huang
, and
C.-W.
Qiu
,
Adv. Opt. Mater.
4
,
818
(
2016
).
4.
C. L.
Holloway
,
E. F.
Kuester
,
J. A.
Gordon
,
J.
O’Hara
,
J.
Booth
, and
D. R.
Smith
,
IEEE Antennas Propag. Mag.
54
,
10
(
2012
).
5.
A. A.
Elsakka
,
V. S.
Asadchy
,
I. A.
Faniayeu
,
S. N.
Tcvetkova
, and
S. A.
Tretyakov
,
IEEE Trans. Antennas Propag.
64
,
4266
(
2016
).
6.
A.
Pors
and
S. I.
Bozhevolnyi
,
Opt. Express
21
,
27438
(
2013
).
7.
M.
Pu
,
P.
Chen
,
C.
Wang
,
Y.
Wang
,
Z.
Zhao
,
C.
Hu
,
C.
Huang
, and
X.
Luo
,
AIP Adv.
3
,
052136
(
2013
).
8.
A. M. H.
Wong
and
G. V.
Eleftheriades
,
Phys. Rev. X
8
,
011036
(
2018
).
9.
Y.
Huang
,
M.
Pu
,
F.
Zhang
,
J.
Luo
,
X.
Li
,
X.
Ma
, and
X.
Luo
,
Adv. Opt. Mater.
7
,
1801480
(
2019
).
10.
A.
Pors
,
M. G.
Nielsen
,
R. L.
Eriksen
, and
S. I.
Bozhevolnyi
,
Nano Lett.
13
,
829
(
2013
).
11.
Y.
Li
,
J.
Zhang
,
S.
Qu
,
J.
Wang
,
H.
Chen
,
Z.
Xu
, and
A.
Zhang
,
Appl. Phys. Lett.
104
,
221110
(
2014
).
12.
W. T.
Chen
,
K.-Y.
Yang
,
C.-M.
Wang
,
Y.-W.
Huang
,
G.
Sun
,
I.-D.
Chiang
,
C. Y.
Liao
,
W.-L.
Hsu
,
H. T.
Lin
,
S.
Sun
et al.
,
Nano Lett.
14
,
225
(
2013
).
13.
L.-H.
Gao
,
Q.
Cheng
,
J.
Yang
,
S.-J.
Ma
,
J.
Zhao
,
S.
Liu
,
H.-B.
Chen
,
Q.
He
,
W.-X.
Jiang
,
H.-F.
Ma
et al.
Light Sci. Appl.
4
,
1
(
2015
).
14.
G.
Zheng
,
H.
Mühlenbernd
,
M.
Kenney
,
G.
Li
,
T.
Zentgraf
, and
S.
Zhang
,
Nat. Nanotechnol.
10
,
308
(
2015
).
15.
A.
Ranjbar
and
A.
Grbic
,
Phys. Rev. B.
95
,
205114
(
2017
).
16.
S.
Sun
,
Q.
He
,
S.
Xiao
,
Q.
Xu
,
X.
Li
, and
L.
Zhou
,
Nat. Mater.
11
,
426
(
2012
).
17.
A.
Pors
,
O.
Albrektsen
,
I. P.
Radko
, and
S. I.
Bozhevolnyi
,
Sci. Rep.
3
,
1
(
2013
).
18.
S. B.
Glybovski
,
S. A.
Tretyakov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
C. R.
Simovski
,
Phys. Rep.
634
,
1
(
2016
).
19.
V.
Fusco
and
N.
Buchanan
,
IET Microw. Antennas Propag.
7
,
131
(
2013
).
20.
A.
Bunkowski
,
O.
Burmeister
,
T.
Clausnitzer
,
E.-B.
Kley
,
A.
Tünnermann
,
K.
Danzmann
, and
R.
Schnabel
,
Appl. Opt.
45
,
5795
(
2006
).
21.
N.
Destouches
,
A.
Tishchenko
,
J.
Pommier
,
S.
Reynaud
,
O.
Parriaux
,
S.
Tonchev
, and
M. A.
Ahmed
,
Opt. Express
13
,
3230
(
2005
).
22.
Z.-L.
Deng
,
S.
Zhang
, and
G. P.
Wang
,
Nanoscale
8
,
1588
(
2016
).
23.
E. G.
Loewen
,
Appl. Opt. Opt. Eng.
9
,
33
(
1983
).
24.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J.-P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
,
Science
334
,
333
(
2011
).
25.
E.
Doumanis
,
G.
Goussetis
,
G.
Papageorgiou
,
V.
Fusco
,
R.
Cahill
, and
D.
Linton
,
IEEE Trans. Antennas Propag.
61
,
232
(
2013
).
26.
V. S.
Asadchy
,
A.
Díaz-Rubio
,
S. N.
Tcvetkova
,
D.-H.
Kwon
,
A.
Elsakka
,
M.
Albooyeh
, and
S. A.
Tretyakov
,
Phys. Rev. X
7
,
031046
(
2017
).
27.
E. F.
Knott
,
Radar Cross Section Measurements
(
Springer Science & Business Media
,
2012
).
28.
Y.-C.
Guo
,
X.-W.
Shi
, and
L.
Chen
,
Prog. Electromagn. Res. B
5
,
153
(
2008
).
29.
V.
Asadchy
,
M.
Albooyeh
,
S.
Tcvetkova
,
A.
Díaz-Rubio
,
Y.
Ra’di
, and
S.
Tretyakov
,
Phys. Rev. B.
94
,
075142
(
2016
).
30.
A.
Epstein
and
G. V.
Eleftheriades
,
Phys. Rev. B.
90
,
235127
(
2014
).
31.
Z.
Chen
,
H.
Deng
,
Q.
Xiong
, and
C.
Liu
,
Appl. Phys. A
124
,
281
(
2018
).

Supplementary Material

You do not currently have access to this content.