Mechanical micro- and nano-patterning processes rely on engineering the interactions between a stamp and a substrate to accommodate surface roughness and particle defects while retaining the geometric integrity of printed features. We introduce a set of algorithms for rapidly simulating the stamp–substrate contact, and we use them to show that advantageous behavior can occur when the stamp consists of a finite-thickness layer bonded to a layer with different elastic properties. The simulations use two-dimensional load-response functions describing in discrete space the response of a stamp surface's shape to a localized unit load. These load-response functions incorporate the contributions both of local, indentation-like displacements and of plate-like bending of finite-thickness stamp layers. The algorithms solve iteratively for contact pressure distributions that, when spatially convolved with the load response, yield deformations consistent with the properties of the stamp and the substrate. We investigate three determinants of stamp performance: conformation to sinusoidal substrate topographies, distortion of material around stamp protrusions, and conformation to isolated spherical dust particles trapped between the stamp and the substrate. All simulation results are encapsulated in dimensionless models that can be applied to the efficient selection of stamp geometries, materials, and loading conditions. A particularly striking finding is that a stamp with a finite-thickness compliant coating bonded to a more rigid support can conform more closely to a trapped particle under a given load than a homogeneous stamp with the properties of the coating. This finding could be used to minimize the impact of particle defects on patterning processes.

1.
G.
Calafiore
et al, “
Printable photonic crystals with high refractive index for applications in visible light
,”
Nanotechnology
27
(
11
),
115303
(
2016
).
2.
C.
Zhang
et al, “
Printed photonic elements: Nanoimprinting and beyond
,”
J. Mater. Chem. C
4
(
23
),
5133
5153
(
2016
).
3.
S. V.
Sreenivasan
, “
Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits
,”
Microsyst. Nanoeng.
3
,
17075
(
2017
).
4.
H.
Inan
et al, “
Photonic crystals: Emerging biosensors and their promise for point-of-care applications
,”
Chem. Soc. Rev.
46
(
2
),
366
388
(
2017
).
5.
J. G.
Ok
,
Y. J.
Shin
,
H. J.
Park
, and
L. J.
Guo
, “
A step toward next-generation nanoimprint lithography: Extending productivity and applicability
,”
Appl. Phys. A
121
(
2
),
343
356
(
2015
).
6.
Y.
Xia
and
G. M.
Whitesides
, “
Soft Lithography
,”
Angew. Chem. Int. Ed.
37
(
5
),
550
575
(
1998
).
7.
J.
Yu
and
V.
Bulovic
, “
Micropatterning metal electrode of organic light emitting devices using rapid polydimethylsiloxane lift-off
,”
Appl. Phys. Lett.
91
(
4
),
043102-1
(
2007
).
8.
J. J.
Dumond
and
H. Y.
Low
, “
Recent developments and design challenges in continuous roller micro- and nanoimprinting
,”
J. Vac. Sci. Technol. B
30
(
1
),
010801
(
2012
).
9.
H.
Gao
,
H.
Tan
,
W.
Zhang
,
K.
Morton
, and
S. Y.
Chou
, “
Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field
,”
Nano Lett.
6
,
2438
2441
(
2006
).
10.
H.
Taylor
,
K.
Smistrup
, and
D.
Boning
, “
Modeling and simulation of stamp deflections in nanoimprint lithography: Exploiting backside grooves to enhance residual layer thickness uniformity
,”
Microelectron. Eng.
88
(
8
),
2154
2157
(
2011
).
11.
B.
Kwon
and
J. H.
Kim
, “
Importance of molds for nanoimprint lithography: Hard, soft, and hybrid molds
,”
J. Nanosci.
2016
,
6571297
(
2016
).
12.
M. M. J.
Decre
,
R.
Schneider
,
D.
Burdinski
,
J.
Schellekens
,
M.
Saalmink
, and
R.
Dona
, “
Wave printing(I): Towards large-area, multilayer microcontact printing
,” in
Nontraditional Approaches to Patterning
(Materials Research Society, 2004), Vol. 2, pp.
59
64
.
13.
C. Y.
Hui
,
A.
Jagota
,
Y. Y.
Lin
, and
E. J.
Kramer
, “
Constraints on microcontact printing imposed by stamp deformation
,”
Langmuir
18
(
4
),
1394
1407
(
2002
).
14.
J. E.
Petrzelka
and
D. E.
Hardt
, “
Static load-displacement behavior of PDMS microfeatures for soft lithography
,”
J. Micromech. Microeng.
22
(
7
),
075015
(
2012
).
15.
A.
Bietsch
and
B.
Michel
, “
Conformal contact and pattern stability of stamps used for soft lithography
,”
J. Appl. Phys.
88
(
7
),
4310
4318
(
2000
).
16.
H.
Schulz
,
M.
Wissen
, and
H.-C.
Scheer
, “
Local mass transport and its effect on global pattern replication during hot embossing
,”
Microelectron. Eng.
67–68
,
657
663
(
2003
).
17.
C.
Gourgon
et al, “
Influence of pattern density in nanoimprint lithography
,”
J. Vac. Sci. Technol. B
21
(
1
),
98
105
(
2003
).
18.
L. J.
Guo
, “
Recent progress in nanoimprint technology and its applications
,”
J. Phys. D Appl. Phys.
37
(
11
),
R123
R141
(
2004
).
19.
N.
Chaix
,
C.
Gourgon
,
C.
Perret
,
S.
Landis
, and
T.
Leveder
, “
Nanoimprint lithography processes on 200 mm Si wafer for optical application: Residual thickness etching anisotropy
,”
J. Vac. Sci. Technol. B
25
(
6
),
2346
2351
(
2007
).
20.
G. M.
McClelland
et al, “
Contact mechanics of a flexible imprinter for photocured nanoimprint lithography
,”
Tribol. Lett.
19
,
59
63
(
2005
).
21.
D. O.
Ouma
et al, “
Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts
,”
IEEE Trans. Semicond. Manuf.
15
(
2
),
232
244
(
2002
).
22.
K.
Forghani
et al, “
Strain and defects in Si-doped (Al)GaN epitaxial layers
,”
J. Appl. Phys.
112
(
9
),
093102
(
2012
).
23.
Z.
Li
et al, “
Hybrid nanoimprint−soft lithography with sub-15 nm resolution
,”
Nano Lett.
9
(
6
),
2306
2310
(
2009
).
24.
L.
Chen
,
X.
Deng
,
J.
Wang
,
K.
Takahashi
, and
F.
Liu
, “
Defect control in nanoimprint lithography
,”
J. Vac. Sci. Technol. B
23
(
6
),
2933
2938
(
2005
).
25.
S. Y.
Chou
, “
Fluid pressure imprint lithography
,” U.S. patent US6482742 B1 (
19 November 2002
).
26.
W.
Zhang
,
H.
Tan
,
L.
Hu
, and
S. Y.
Chou
, “
Fast nanoimprinting apparatus using deformable mold
,” U.S. patent US8747092 B2 (
10 June 2014
).
27.
See http://nanonex.com/ for information about wafer-scale nanoimprint lithography equipment using pneumatic loading of stamps, accessed 6 November 2018.
28.
See http://www.nilt.com/default.asp?Action=Details&Item=514 for Compact Nanoimprint Tool; accessed 6 November 2018.
29.
See http://obducat.com/ for information about commercial nanoimprint lithography equipment; accessed 6 November 2018.
30.
B.
Heidari
, “
Device and method in connection with the production of structures
,” U.S. Patent US7195734 B2 (
27 March 2007
).
31.
B.
Heidari
and
M.
Beck
, “
Device and method for large area lithography
,” U.S. patent US8147235 B2 (
3 April 2012
).
32.
W.
Wu
et al, “
Sub-10 nm nanoimprint lithography by wafer bowing
,”
Nano Lett.
8
(
11
),
3865
3869
(
2008
).
33.
T.
Nielsen
et al, “
Flexible stamp for nanoimprint lithography
,” in
Technical Digest of the 18th IEEE Conference on Micro Electro Mechanical Systems, MEMS
(
IEEE
,
2005
), pp.
508
511
.
34.
T.
Nielsen
,
A.
Kristensen
, and
O.
Hansen
, “
Flexible nano-imprint stamp
,” U.S. patent US8075298 B2 (
13 December 2011
).
35.
H.
Hiroshima
, “
Photo-nanoimprinting using sample-on-flexible-thruster stage
,”
Jpn. J. Appl. Phys.
45
(
6S
),
5602
(
2006
).
36.
H.
Schmid
and
B.
Michel
, “
Siloxane polymers for high-resolution, high-accuracy soft lithography
,”
Macromolecules
33
(
8
),
3042
3049
(
2000
).
37.
T. W.
Odom
,
J. C.
Love
,
D. B.
Wolfe
,
K. E.
Paul
, and
G. M.
Whitesides
, “
Improved pattern transfer in soft lithography using composite stamps
,”
Langmuir
18
(
13
),
5314
5320
(
2002
).
38.
S.
Li
et al, “
A composite hardness stamp in 184 PDMS for nanostructures transfer in high fidelity
,” in
2012 12th IEEE Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2012
), pp.
1
4
.
39.
B.
Li
,
J.
Zhang
, and
H.
Ge
, “
A sandwiched flexible polymer mold for control of particle-induced defects in nanoimprint lithography
,”
Appl. Phys. A
110
(
1
),
123
128
(
2013
).
40.
B.
Michel
et al, “
Printing meets lithography: Soft approaches to high-resolution patterning
,”
IBM J. Res. Dev.
45
(
5
),
697
719
(
2001
).
41.
T.
Mäkelä
,
T.
Haatainen
, and
J.
Ahopelto
, “
Roll-to-roll printed gratings in cellulose acetate web using novel nanoimprinting device
,”
Microelectron. Eng.
88
(
8
),
2045
2047
(
2011
).
42.
See https://www.suss.com/en/products-solutions/technologies for Süss MicroTec: Process Technologies; accessed 4 November 2018.
43.
R. R. A.
Syms
,
H.
Zou
,
K.
Choonee
, and
R. A.
Lawes
, “
Silicon microcontact printing engines
,”
J. Micromech. Microeng.
19
(
2
),
025027
(
2009
).
44.
H.
Taylor
and
D.
Boning
, “
Towards nanoimprint lithography-aware layout design checking
,”
Proc. SPIE
7461
,
76410U
(
2010
).
45.
H. K.
Taylor
, “
Defectivity prediction for droplet-dispensed UV nanoimprint lithography, enabled by fast simulation of resin flow at feature, droplet, and template scales
,”
Proc. SPIE
9777
,
97770E
(
2016
).
46.
M.
Papenheim
,
K.
Dhima
,
S.
Wang
,
C.
Steinberg
, and
H.-C.
Scheer
, “
Single-layer versus two-layer stamps for reduced pressure thermal nanoimprint
,”
Appl. Phys. A
121
,
481
487
(
2015
).
47.
T.
Nogi
and
T.
Kato
, “
Influence of a hard surface layer on the limit of elastic contact – Part I: Analysis using a real surface model
,”
J. Tribol., Trans. ASME
119
(
3
),
493
500
(
1997
).
48.
S.
Cai
and
B.
Bhushan
, “
A numerical three-dimensional contact model for rough, multilayered elastic/plastic solid surfaces
,”
Wear
259
(
7–12
),
1408
1423
(
2005
).
49.
H.-C.
Scheer
,
M.
Papenheim
,
K.
Dhima
,
S.
Wang
, and
C.
Steinberg
, “
Aspects of cavity filling with nano imprint
,”
Microsyst. Technol.
21
(
8
),
1595
1605
(
2015
).
50.
See http://www.mathworks.com/help/matlab/ref/bicgstab.html for Biconjugate gradients stabilized method—MATLAB bicgstab; accessed 6 November 2018.
51.
H.
Taylor
,
K.
Smistrup
, and
D.
Boning
, “
Modeling the enhancement of nanoimprint stamp bending compliance by backside grooves: Mitigating the impact of wafer nanotopography on residual layer thickness
,” in
Nanoimprint and Nanoprint Technology
(Copenhagen, Denmark,
2010
).

Supplementary Material

You do not currently have access to this content.