In this letter, we investigate the On/Off switching mechanism of AlGaN/GaN Fin-high-electron-mobility transistors (Fin-HEMTs) comprehensively through experiment and simulation. The “tri-gated fin channel” is characterized by a direct gate-metal/semiconductor contact, that is, a Schottky gate instead of a conventional metal-insulator-semiconductor gate stack. The minimum fin width of our Fin-HEMT is 100 nm with a threshold voltage (Vth) of −0.65 V, and a positive Vth shift with a channel width scaling is also obtained in the experiment. Through the 3-D simulation, it can be found that while the channel width is narrow enough, the carrier in the fin channel is dominated by the side-gate laterally instead of the vertical top-gate control. The band diagram also indicates that the conduction band in the fin channel is pulled up more rapidly than the planar HEMT with a negative gate bias. This result can be attributed to channel pinch-off through the depletion region which is created by the Schottky side-gate. Therefore, a narrow fin channel can lead to the “early pinch-off effect” compared with the planar HEMT.

1.
U. K.
Mishra
and
P.
Parikh
,
Proc. IEEE
90
,
1022
(
2002
).
2.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y.-F.
Wu
,
Proc. IEEE
96
,
287
(
2008
).
3.
M.
Trivedi
and
K.
Shenai
,
J. Appl. Phys.
85
,
6889
(
1999
).
4.
R.
Quay
,
Gallium Nitride Electronics
(
Springer
,
Heidelberg
,
2008
), p.
28
.
5.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
(
16
),
R10024
(
1997
).
6.
O.
Ambacher
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
L.
Wittmer
,
M.
Stutzmann
,
W.
Rieger
, and
J.
Hilsenbeck
,
J. Appl. Phys.
85
,
3222
(
1999
).
7.
X.
Huang
,
Z.
Liu
,
Q.
Li
, and
F. C.
Lee
,
IEEE Trans. Power Electron.
29
,
2453
(
2014
).
8.
Z.
Liu
,
X.
Huang
,
F. C.
Lee
, and
Q.
Li
,
IEEE Trans. Power Electron.
29
,
1977
(
2014
).
9.
Y.
Okamoto
,
Y.
Ando
,
T.
Nakayama
,
K.
Hataya
,
H.
Miyamoto
,
T.
Inoue
,
M.
Senda
,
K.
Hirata
,
M.
Kosaki
,
N.
Shibata
, and
M.
Kuzuhara
,
IEEE Trans. Electron Devices
51
,
2217
(
2004
).
10.
W.
Saito
,
Y.
Takada
,
M.
Kuraguchi
,
K.
Tsuda
, and
I.
Omura
,
IEEE Trans. Electron Devices
53
,
356
(
2006
).
11.
T.
Oka
and
T.
Nozawa
,
IEEE Electron Device Lett.
29
,
668
(
2008
).
12.
Y.
Cai
,
Y.
Zhou
,
K. J.
Chen
, and
K. M.
Lau
,
IEEE Electron Device Lett.
26
,
435
(
2005
).
13.
T.
Palacios
,
C.-S.
Suh
,
A.
Chakraborty
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
27
,
428
(
2006
).
14.
Y.
Cai
,
Y.
Zhou
,
K. M.
Lau
, and
K. J.
Chen
,
IEEE Trans. Electron Devices
53
,
2207
(
2006
).
15.
Y.
Uemoto
,
M.
Hikita
,
H.
Ueno
,
H.
Matsuo
,
H.
Ishida
,
M.
Yanagihara
,
T.
Ueda
,
T.
Tanaka
, and
D.
Ueda
, in
IEEE International Electron Device Meeting
, San Francisco, CA, USA, 11–13 December 2006 (IEEE Conference Publications, 2006), p. 907.
16.
Y.
Uemoto
,
M.
Hikita
,
H.
Ueno
,
H.
Matsuo
,
H.
Ishida
,
M.
Yanagihara
,
T.
Ueda
,
T.
Tanaka
, and
D.
Ueda
,
IEEE Trans. Electron Devices
54
,
3393
(
2007
).
17.
L.-Y.
Su
,
F.
Lee
, and
J. J.
Huang
,
IEEE Trans. Electron Devices
61
,
460
(
2014
).
18.
T.
Tamura
,
J.
Kotani
,
S.
Kasai
, and
T.
Hashizume
,
Appl. Phys. Exp.
1
,
023001
(
2008
).
19.
K.
Ohi
and
T.
Hashizume
,
Jpn. J. Appl. Phys.
48
,
081002
(
2009
).
20.
K.
Ohi
,
J. T.
Asubar
,
K.
Nishiguchi
, and
T.
Hashizume
,
IEEE Trans. Electron Devices
60
,
2997
(
2013
).
21.
S.
Liu
,
Y.
Cai
,
G.
Gu
,
J.
Wang
,
C.
Zeng
,
W.
Shi
,
Z.
Feng
,
H.
Qin
,
Z.
Cheng
,
K. J.
Chen
, and
B.
Zhang
,
IEEE Electron Device Lett.
33
,
354
(
2012
).
22.
B.
Lu
,
E.
Matioli
, and
T.
Palacios
,
IEEE Electron Device Lett.
33
,
360
(
2012
).
23.
K.-S.
Im
,
Y.-W.
Jo
,
J.-H.
Lee
,
S.
Cristoloveanu
, and
J.-H.
Lee
,
IEEE Electron Device Lett.
34
,
381
(
2013
).
24.
S.
Takashima
,
Z.
Li
, and
T. P.
Chow
,
IEEE Trans. Electron Devices
60
,
3025
(
2013
).
25.
S.
Turuvekere
,
N.
Karumuri
,
A. A.
Rahman
,
A.
Bhattacharya
,
A.
DasGupta
, and
N.
DasGupta
,
IEEE Trans. Electron Devices
60
,
3157
(
2013
).
26.
Y.-S.
Lin
,
Y.-W.
Lain
, and
S. S. H.
Hsu
,
IEEE Electron Device Lett.
31
,
102
(
2010
).
27.
P.
Liu
,
C.
Xie
,
Z.
Feng
,
J.
Chen
, and
D.
Chen
,
IEEE Electron Device Lett.
34
,
1232
(
2013
).
28.
D.
Qiao
,
L. S.
Yu
,
S. S.
Lau
,
J. M.
Redwing
,
J. Y.
Lin
, and
H. X.
Jiang
,
J. Appl. Phys.
87
,
801
(
2000
).
29.
A. F. M.
Anwar
and
E. W.
Faraclas
,
Solid State Electron.
50
,
1041
(
2006
).
30.
C.-L.
Lin
,
P.-H.
Hsiao
,
W.-K.
Yeh
,
H.-W.
Liu
,
S.-R.
Yang
,
Y.-T.
Chen
,
K.-M.
Chen
, and
W.-S.
Liao
,
IEEE Trans. Electron Devices
60
,
3639
(
2013
).
31.
A. V.
Thathachary
,
L.
Liu
, and
S.
Datta
, in
71st Device Research Conference
(IEEE Conference Publications, 2013), p. 17.
32.
J. T.
Asubar
,
Z.
Yatabe
, and
T.
Hashizume
,
Appl. Phys. Lett.
105
,
053510
(
2014
).
33.
L.-C.
Chang
,
M.
Yang
,
Y.-H.
Jiang
, and
C.-H.
Wu
,
Proc. SPIE
101041
,
101041F-1
(
2017
).
34.
K.-S.
Im
,
D.-H.
Son
,
H.-K.
Ahn
,
S.-B.
Bae
,
J.-K.
Mun
,
E.-S.
Nam
,
S.
Cristoloveanu
, and
J.-H.
Lee
,
Solid State Electron.
89
,
124
(
2013
).
35.
C.-K.
Li
,
H.-C.
Yang
,
T.-C.
Hsu
,
Y.-J.
Shen
,
A.-S.
Liu
, and
Y.-R.
Wu
,
J. Appl. Phys.
113
,
183104
(
2013
).
36.
T.-J.
Yang
,
R.
Shivaraman
,
J. S.
Speck
, and
Y.-R.
Wu
,
J. Appl. Phys.
116
,
113104
(
2014
).
37.
C.
Gaquiere
,
S.
Trassaert
,
B.
Boudart
, and
Y.
Crosnier
,
IEEE Microw. Guided Wave Lett.
10
,
19
(
2000
).
38.
S.
Bose, Adarsh
,
A.
Kumar, Simrata
,
M.
Gupta
, and
R. S.
Gupta
,
Microelectron. J.
32
,
983
(
2001
).
You do not currently have access to this content.