Bean’s critical-state model has served as the foundation for computing the heat generated by the time-varying magnetic field or current in type-II superconductors. Two key features of the Bean model are (i) the current density is either zero or at the critical value Jc and (ii) the change in the current distribution begins at the surface. In this work, we apply the circuit model to simulate the process of charging a type-II superconductor. In addition to the self and mutual inductances among the basic units, we introduce a current-dependent longitudinal resistance to describe the critical current density, above which the conductor becomes resistive. By identifying the inductance values, we are able to reproduce the characteristic behavior of the Bean model. Specifically, we consider a superconducting slab and a superconducting wire composed of straight or twisted filaments and recover the established analytical results for these geometries. In terms of the circuit model, the behavior of the Bean model is a consequence of the geometry-specific structure of inductances and the non-linear resistances. Besides offering an intuitive explanation of the Bean model, our circuit-model calculations provide concrete examples to show that they can be used to simulate the complete charging process of multi-filament superconducting wires.

1.
A. A.
Abrikosov
, “
On the magnetic properties of superconductors of the second group
,”
Sov. Phys. JETP
5
,
1174
(
1957
).
2.
A. A.
Abrikosov
, “
Nobel lecture: Type-ii superconductors and the vortex lattice
,”
Rev. Mod. Phys.
76
,
975
979
(
2004
).
3.
M. N.
Wilson
,
Superconducting Magnets
(
Oxford Science Publication
,
1983
).
4.
Y.
Iwasa
,
Case Studies in Superconducting Magnets
, 2nd ed. (
Springer
,
2009
).
5.
M. S.
Livingston
and
J.
Blewett
,
Particle Accelerators
(
McGraw-Hill
,
New York
,
1969
).
6.
S.
Humphries
,
Principles of Charged Particle Acceleration
(
Wiley-Interscience
,
1986
).
7.
D.
McRobbie
,
MRI from Picture to Proton
(
Cambridge University Press
,
Cambridge, UK; New York
,
2007
).
8.
J.
Keeler
,
Understanding NMR Spectroscopy
, 2nd ed. (
John Wiley and Sons
,
2011
).
9.
C. P.
Bean
, “
Magnetization of hard superconductors
,”
Phys. Rev. Lett.
8
,
250
253
(
1962
).
10.
Interim Summary Report on the Analysis of the 19 September 2008 Incident at the LHC, CERN Document EDMS 973073.
11.
Y. B.
Kim
,
C. F.
Hempstead
, and
A. R.
Strnad
, “
Magnetization and critical supercurrents
,”
Phys. Rev.
129
,
528
535
(
1963
).
12.
M. A. R.
LeBlanc
, “
Magnetization of hard superconductors
,”
Phys. Rev. Lett.
11
,
250
253
(
1963
).
13.
M.
Tinkham
,
Introduction to Superconductivity
, 2nd ed. (
McGraw-Hill, Inc.
,
1996
).
14.
C. P.
Bean
, “
Magnetization of high-field superconductors
,”
Rev. Mod. Phys.
36
,
31
39
(
1964
).
15.
R.
Hancox
, “
Enthalpy stabilized superconducting magnets
,”
IEEE Trans. Magn.
4
,
486
488
(
1968
).
16.
P. S.
Swartz
and
C. P.
Bean
, “
A model for magnetic instabilities in hard superconductors: The adiabatic critical state
,”
J. Appl. Phys.
39
,
4991
4998
(
1968
).
17.
B.
Bordini
,
E.
Barzi
,
S.
Feher
,
L.
Rossi
, and
A. V.
Zlobin
, “
Self-field effects in magneto-thermal instabilities for Nb-Sn strands
,”
IEEE Trans. Appl. Supercond.
18
,
1309
1312
(
2008
).
18.
B.
Bordini
and
L.
Rossi
, “
Self field instability in high-JcNb3Sn strands with high copper residual resistivity ratio
,”
IEEE Trans. Appl. Supercond.
19
,
2470
2476
(
2009
).
19.
L.
Bottura
,
M.
Breschi
, and
M.
Fabbri
, “
Analytical solution for the current distribution in multistrand superconducting cables
,”
J. Appl. Phys.
92
,
7571
7580
(
2002
).
20.
L.
Bottura
,
M.
Breschi
, and
M.
Fabbri
, “
Analytical calculation of current distribution in multistrand superconducting cables
,”
IEEE Trans. Appl. Supercond.
13
,
1710
1713
(
2003
).
21.
L.
Krempasky
and
C.
Schmidt
, “
Influence of a longitudinal variation of db/dt on the magnetic field distribution of superconducting accellerator magnets
,”
Appl. Phys. Lett.
66
,
1545
1547
(
1995
).
22.
A.
Akhmetov
,
L.
Bottura
,
M.
Breschi
, and
P.
Ribani
, “
A theoretical investigation on current imbalance in flat two-layer superconducting cables
,”
Cryogenics
40
,
627
635
(
2000
),
23.
B.
Turck
, “
Influence of a transverse conductance on current sharing in a two-layer superconducting cable
,”
Cryogenics
14
,
448
454
(
1974
).
24.
T.
Tominaka
, “
Calculations using the helical filamentary structure for current distributions of a six around one superconducting strand cable and a multifilamentary composite
,”
J. Appl. Phys.
96
,
5069
5080
(
2004
).
25.
T.
Tominaka
, “
Calculations using the helical filamentary structure for current distributions of twisted superconducting multifilamentary composites
,”
Supercond. Sci. Technol.
18
,
634
(
2005
).
26.
J. B.
Pendry
and
A.
MacKinnon
, “
Calculation of photon dispersion relations
,”
Phys. Rev. Lett.
69
,
2772
2775
(
1992
).
27.
It appears that using alternate mesh points is helpful for numerical stability when two coupled functions are related that the spatial derivative of one function gives the other. Here, j and v have this relationship. In Ref. 26, it is the electric and magnetic fields that have this relationship.
28.
L. N.
Cooper
, “
Bound electron pairs in a degenerate fermi gas
,”
Phys. Rev.
104
,
1189
1190
(
1956
).
29.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Theory of superconductivity
,”
Phys. Rev.
108
,
1175
1204
(
1957
).
30.
L. P.
Gorkov
, “
Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity
,”
Sov. Phys. JETP
9
,
1364
(
1959
).
31.
P.
Anderson
, “
Theory of dirty superconductors
,”
J. Phys. Chem. Solids
11
,
26
30
(
1959
).
32.
A.
Abrikosov
, “
The magnetic properties of superconducting alloys
,”
J. Phys. Chem. Solids
2
,
199
208
(
1957
).
33.
U.
Essmann
and
H.
Träuble
, “
The direct observation of individual flux lines in type ii superconductors
,”
Phys. Lett. A
24
,
526
527
(
1967
).
34.
P. L.
Gammel
,
D. J.
Bishop
,
G. J.
Dolan
,
J. R.
Kwo
,
C. A.
Murray
,
L. F.
Schneemeyer
, and
J. V.
Waszczak
, “
Observation of hexagonally correlated flux quanta in YBa2<Cu3O7
,”
Phys. Rev. Lett.
59
,
2592
2595
(
1987
).
35.
Y. B.
Kim
,
C. F.
Hempstead
, and
A. R.
Strnad
, “
Flux creep in hard superconductors
,”
Phys. Rev.
131
,
2486
2495
(
1963
).
36.
P. W.
Anderson
, “
Theory of flux creep in hard superconductors
,”
Phys. Rev. Lett.
9
,
309
311
(
1962
).
37.
J.
Bardeen
and
M. J.
Stephen
, “
Theory of the motion of vortices in superconductors
,”
Phys. Rev.
140
,
A1197
A1207
(
1965
).
38.
M.
Tinkham
, “
Viscous flow of flux in type-ii superconductors
,”
Phys. Rev. Lett.
13
,
804
807
(
1964
).
39.
J. R.
Clem
, “
Local temperature-gradient contribution to flux-flow viscosity in superconductors
,”
Phys. Rev. Lett.
20
,
735
738
(
1968
).
40.
B.
Maddock
,
G.
James
, and
W.
Norris
, “
Superconductive composites: Heat transfer and steady state stabilization
,”
Cryogenics
9
,
261
273
(
1969
).
41.
L.
Krempasky
and
C.
Schmidt
, “
Theory of “supercurrents” and their influence on field quality and stability of superconducting magnets
,”
J. Appl. Phys.
78
,
5800
5810
(
1995
).
42.
Typically, this is done by approximating the mixture of superconductor/normal-conductor by superconductor with a reduced critical current.
43.
J.
Duchateau
and
B.
Turck
, “
Self-field degradation effect in adiabatic conditions
,”
Cryogenics
14
,
481
486
(
1974
).
You do not currently have access to this content.