In this study, we experimentally investigated the effect of charged particles generated from an alternating current glow discharge in liquids and the ability of these particles to synthesize silver nanoparticles. The measurement of the pH and electrical conductivity in liquids was performed to study the interface reactions and transfer of species from plasmas to liquids. Solutions of sodium hydroxide, de-ionized water, sodium nitrate, and silver nitrate were used in this study. We determined that the pH of de-ionized water and sodium hydroxide solutions was reduced to 4.0 during the discharge. However, the pH of nitrate salts evolved in two opposite stages, with an initial reduction within 3 min from the start of the discharge and a subsequent increase to alkaline values. The results also showed that spherical silver nanoparticles were generated in the silver nitrate solutions under the discharge. These results indicate that alternating current glow discharge generates both positive ions and free electrons when in contact with a liquid, leading to complex chemical transformations. This suggests that the proposed approach can be used for noble nanoparticle synthesis.

1.
F.
Paladini
,
C.
Di Franco
,
A.
Panico
,
G.
Scamarcio
,
A.
Sannino
, and
M.
Pollini
,
Materials
9
,
1
(
2016
).
2.
A. L.
González
and
C.
Noguez
,
Phys. Status Solidi (C)
4
,
4118
(
2007
).
3.
G.
Schmidl
,
J.
Dellith
,
H.
Schneidewind
,
D.
Zopf
,
O.
Stranik
,
A.
Gawlik
,
S.
Anders
,
V.
Tympel
,
C.
Katzer
,
F.
Schmidl
, and
W.
Fritzsche
,
Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
193
,
207
(
2015
).
4.
M. R.
Bindhu
and
M.
Umadevi
,
Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
135
,
373
(
2015
).
5.
A.
Pal
,
S.
Shah
, and
S.
Devi
,
Mater. Chem. Phys.
114
,
530
(
2009
).
6.
A.
Callegari
,
D.
Tonti
, and
M.
Chergui
,
Nano Lett.
3
,
1565
(
2003
).
7.
C.
He
,
L.
Liu
,
Z.
Fang
,
J.
Li
,
J.
Guo
, and
J.
Wei
,
Ultrason. Sonochem.
21
,
542
(
2014
).
8.
D.
Mariotti
,
J.
Patel
,
V.
Švrček
, and
P.
Maguire
,
Plasma Process. Polym.
9
,
1074
(
2012
).
9.
K.
Oehmigen
,
M.
Hähnel
,
R.
Brandenburg
,
C.
Wilke
,
K. D.
Weltmann
, and
T.
Von Woedtke
,
Plasma Process. Polym.
7
,
250
(
2010
).
10.
H.
Jablonowski
and
T.
von Woedtke
,
Clin. Plasma Med.
3
,
42
(
2015
).
11.
S.
Samukawa
,
M.
Hori
,
S.
Rauf
,
K.
Tachibana
,
P.
Bruggeman
,
G.
Kroesen
,
J. C.
Whitehead
,
A. B.
Murphy
,
A. F.
Gutsol
,
S.
Starikovskaia
,
U.
Kortshagen
,
J. P.
Boeuf
,
T. J.
Sommerer
,
M. J.
Kushner
,
U.
Czarnetzki
, and
N.
Mason
,
J. Phys. D Appl. Phys.
45
(
2012
).
12.
N.
Shirai
,
K.
Ichinose
,
S.
Uchida
, and
F.
Tochikubo
,
Plasma Sources Sci. Technol.
20
(
2011
).
13.
F.
Tochikubo
,
Y.
Shimokawa
,
N.
Shirai
, and
S.
Uchida
,
Jpn. J. Appl. Phys.
53
,
126201
(
2014
).
14.
N.
Shirai
,
S.
Uchida
, and
F.
Tochikubo
,
Jpn. J. Appl. Phys.
53
,
046202
(
2014
).
15.
P.
Rumbach
,
M.
Witzke
,
R. M.
Sankaran
, and
D. B.
Go
,
J. Am. Chem. Soc.
135
,
16264
(
2013
).
16.
T.
Cserfalvi
and
P.
Mezei
,
Anal. Bioanal. Chem.
355
,
813
(
1996
).
17.
R. A.
Dressler
and
E.
Murad
,
J. Chem. Phys.
100
,
5656
(
1994
).
18.
R. A.
Dressler
,
R. H.
Salter
, and
E.
Murad
,
J. Chem. Phys.
99
,
1159
(
1993
).
19.
S. T.
Graul
,
S.
Williams
,
R. A.
Dressler
,
R. H.
Salter
, and
E.
Murad
,
J. Chem. Phys.
100
,
7348
(
1994
).
20.
S.
Zhang
,
A.
Sobota
,
E. M.
Van Veldhuizen
, and
P. J.
Bruggeman
,
J. Phys. D Appl. Phys.
48
,
15203
(
2015
).
21.
B. T. J.
Van Ham
,
S.
Hofmann
,
R.
Brandenburg
, and
P. J.
Bruggeman
,
J. Phys. D Appl. Phys.
47
,
224013
(
2014
).
22.
B. K. H. L.
Boekema
,
S.
Hofmann
,
B. J. T.
Van Ham
,
P. J.
Bruggeman
, and
E.
Middelkoop
,
J. Phys. D Appl. Phys.
46
,
422001
(
2013
).
23.
V. S. S. K.
Kondeti
,
U.
Gangal
,
S.
Yatom
, and
P. J.
Bruggeman
,
J. Vac. Sci. Technol. A
35
,
061302
(
2017
).
24.
C. I. M.
Beenakker
,
F. J. D.
Heer
,
H. B.
Krop
, and
G. R.
Möhlmann
,
Chem. Phys.
6
,
445
(
1974
).
25.
J. C.
Pickering
and
V.
Zilio
,
Eur. Phys. J. D
13
,
181
(
2001
).
26.
P. J.
Bruggeman
,
M. J.
Kushner
,
B. R.
Locke
,
J. G. E.
Gardeniers
,
W. G.
Graham
,
D. B.
Graves
,
R. C. H. M.
Hofman-Caris
,
D.
Maric
,
J. P.
Reid
,
E.
Ceriani
,
D.
Fernandez Rivas
,
J. E.
Foster
,
S. C.
Garrick
,
Y.
Gorbanev
,
S.
Hamaguchi
,
F.
Iza
,
H.
Jablonowski
,
E.
Klimova
,
J.
Kolb
,
F.
Krcma
,
P.
Lukes
,
Z.
MacHala
,
I.
Marinov
,
D.
Mariotti
,
S.
Mededovic Thagard
,
D.
Minakata
,
E. C.
Neyts
,
J.
Pawlat
,
Z. L.
Petrovic
,
R.
Pflieger
,
S.
Reuter
,
D. C.
Schram
,
S.
Schröter
,
M.
Shiraiwa
,
B.
Tarabová
,
P. A.
Tsai
,
J. R. R.
Verlet
,
T.
Von Woedtke
,
K. R.
Wilson
,
K.
Yasui
, and
G.
Zvereva
,
Plasma Sources Sci. Technol.
25
(
2016
).
27.
Y.
Itikawa
and
N.
Mason
,
J. Phys. Chem. Ref. Data
34
,
1
(
2005
).
28.
R. T.
Wiedmann
,
R. G.
Tonkyn
,
M. G.
White
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
97
,
768
(
1992
).
29.
N.
Jonathan
,
A.
Morris
,
D. J.
Smith
, and
K. J.
Ross
,
Chem. Phys. Lett.
7
,
497
(
1970
).
30.
J.
Meesungnoen
,
J.-P.
Jay-Gerin
,
A.
Filali-Mouhim
,
S.
Mankhetkorn
, and
M.
Carlo
,
Radiat. Res.
158
,
657
(
2014
).
31.
S. T.
Arnold
,
R. A.
Dressler
,
M. J.
Bastian
,
J. A.
Gardner
, and
E.
Murad
,
J. Chem. Phys.
102
,
6110
(
1995
).
32.
T.
Murakami
,
K.
Niemi
,
T.
Gans
,
D.
O’Connell
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
22
,
045010
(
2013
).
33.
M.
Takebe
,
A.
Viggiano
,
Y.
Ikezoe
, and
S.
Matsuoka
,
Gas Phase Ion-Molecule Reaction Rate Constants Through 1986
(
Maruzen Co. Ltd
,
Tokyo
,
1987
).
34.
P.
Kebarle
,
S. K.
Searles
,
A.
Zolla
,
J.
Scarborough
, and
M.
Arshadi
,
J. Am. Chem. Soc.
89
,
6393
(
1967
).
35.
M.
Park
,
I.
Shin
,
N. J.
Singh
, and
K. S.
Kim
,
J. Phys. Chem. A
111
,
10692
(
2007
).
36.
E. J.
Hart
and
M.
Anbar
,
The Hydrated Electron
(
Wiley
,
New York
,
1970
).
37.
A. W.
Adamson
,
Textbook of Physical Chemistry
(
Academic Press
,
London
,
1973
).
38.
A. J.
Bard
,
R.
Parsons
, and
J.
Jordan
,
Standard Potentials in Aqueous Solution
(
Routledge
,
New York
,
1985
).
39.
J. A.
Manion
,
R. E.
Huie
,
R. D.
Levin
,
D. R.
Burgess
 Jr.
,
V. L.
Orkin
,
W.
Tsang
,
W. S.
McGivern
,
J. W.
Hudgens
,
V. D.
Knyazev
,
D. B.
Atkinson
,
E.
Chai
,
A. M.
Tereza
,
C.-Y.
Lin
,
T. C.
Allison
,
W. G.
Mallard
,
F.
Westley
,
J. T.
Herron
,
R. F.
Hampson
, and
D. H.
Frizzell
, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320. Web address: http://kinetics.nist.gov/.
You do not currently have access to this content.