The functional stability of a shape memory alloy (SMA) may be related to its structural compatibility between the parent-phase and the martensitic-phase structures. In this study, we perform systematic first-principles calculations for 276 Ni–Ti-based ternary alloys to investigate their energetic stability as well as their structural compatibility between the parent- and the martensitic-phase structures. We analyze in detail the dependences of the energetics and structural properties on the additional element X, on X concentration, and on the replaced chemical element. Some X are found to energetically stabilize the B19 structures more than the B19′ structures at X concentrations above 6.25 at. %. It is also found that the B19–B2 martensitic transformation shows better structural compatibility than the B19′–B2 transformation for most of the investigated ternary Ni–Ti–X alloys. These alloys also tend to have better structural compatibility than binary equiatomic NiTi. Moreover, we screen the investigated alloys on the basis of their energetic stability and structural compatibility, and we identify 26 Ni–Ti–X alloys as possible SMAs with good functional stability. In this study, we reveal a strong potential of the computational design for improving the functional stability of Ni–Ti SMAs by alloying additional elements.

1.
J. M.
Jani
,
M.
Leary
,
A.
Subic
, and
M. A.
Gibson
,
Mater. Design
56
,
1078
(
2014
).
2.
K.
Otsuka
and
X.
Ren
,
Prog. Mater. Sci.
50
,
511
(
2005
).
3.
Z.
Zhang
,
R. D.
James
, and
S.
Müller
,
Acta Mater.
57
,
4332
(
2009
).
4.
J.
Cui
,
Y. S.
Chu
,
O. O.
Famodu
,
Y.
Furuya
,
J.
Hattrick-Simpers
,
R. D.
James
,
A.
Ludwig
,
S.
Thienhaus
,
M.
Wuttig
,
Z.
Zhang
, and
I.
Takeuchi
,
Nat. Mater.
5
,
286
(
2006
).
5.
R.
Zarnetta
,
R.
Takahashi
,
M. L.
Young
,
A.
Savan
,
Y.
Furuya
,
S.
Thienhaus
,
B.
Maaß
,
M.
Rahim
,
J.
Frenzel
,
H.
Brunken
,
Y. S.
Chu
,
V.
Srivastava
,
R. D.
James
,
I.
Takeuchi
,
G.
Eggeler
, and
A.
Ludwig
,
Adv. Func. Mater.
20
,
1917
(
2010
).
6.
R. D.
James
and
K. F.
Hane
,
Acta Mater.
48
,
197
(
2000
).
7.
K.
Otsuka
,
T.
Sawamura
, and
K.
Shimizu
,
Phys. Status Solidi A
5
,
457
(
1971
).
8.
Y.
Kudoh
,
M.
Tokonami
,
S.
Miyazaki
, and
K.
Otsuka
,
Acta Metall.
33
,
2049
(
1985
).
9.
X.
Huang
,
G. J.
Ackland
, and
K. M.
Rabe
,
Nat. Mater.
2
,
307
(
2003
).
10.
S.
Kibey
,
H.
Sehitoglu
, and
D. D.
Johnson
,
Acta Mater.
57
,
1624
(
2009
).
11.
K. G.
Vishnu
and
A.
Strachan
,
Acta Mater.
58
,
745
(
2010
).
12.
D.
Holec
,
M.
Friák
,
A.
Dlouhý
, and
J.
Neugebauer
,
Phys. Rev. B
84
,
224119
(
2011
).
13.
M.
Mizuno
,
H.
Araki
, and
Y.
Shirai
,
Acta Mater.
95
,
184
(
2015
).
14.
J. B.
Haskins
,
A. E.
Thompson
, and
J. W.
Lawson
,
Phys. Rev. B
94
,
214110
(
2016
).
15.
J. B.
Haskins
and
J. W.
Lawson
,
J. Appl. Phys.
121
,
205103
(
2017
).
16.
N. A.
Zarkevich
and
D. D.
Johnson
,
Phys. Rev. Lett.
113
,
265701
(
2014
).
17.
N.
Hatcher
,
O. Y.
Kontsevoi
, and
A. J.
Freeman
,
Phys. Rev. B
80
,
144203
(
2009
).
18.
M. F. X.
Wagner
and
W.
Windl
,
Acta Mater.
56
,
6232
(
2008
).
19.
J. M.
Lu
,
Q. M.
Hu
,
L.
Wang
,
Y. J.
Li
,
D. S.
Xu
, and
R.
Yang
,
Phys. Rev. B
75
,
094108
(
2007
).
20.
M. E.
Manley
,
M.
Asta
,
J. C.
Lashley
,
C. M.
Retford
,
W. L.
Hults
,
R. D.
Taylor
,
D. J.
Thoma
,
J. L.
Smith
,
R. E.
Hackenberg
, and
K.
Littrell
,
Phys. Rev. B
77
,
024201
(
2008
).
21.
D.
Holec
,
M.
Friák
,
A.
Dlouhý
, and
J.
Neugebauer
,
Phys. Rev. B
89
,
014110
(
2014
).
22.
J.
Frenzel
,
A.
Wieczorek
,
I.
Opahle
,
B.
Maaß
,
R.
Drautz
, and
G.
Eggeler
,
Acta Mater.
90
,
213
(
2015
).
23.
N.
Singh
,
A.
Talapatra
,
A.
Junkaew
,
T.
Duong
,
S.
Gibbons
,
S.
Li
,
H.
Thawabi
,
E.
Olivos
, and
R.
Arróyave
,
Comput. Mater. Sci.
112
,
347
(
2016
).
24.
Z.
Nishiyama
,
Martensitic Transformation
, 1st ed. (
Academic Press
,
1978
).
25.
J.
Lee
,
Y.
Ikeda
, and
I.
Tanaka
,
NPJ Comput. Mater.
3
,
52
(
2017
).
26.
W.-S.
Ko
,
B.
Grabowski
, and
J.
Neugebauer
,
Phys. Rev. B
92
,
134107
(
2015
).
27.
X.
Huang
,
C.
Bungaro
,
V.
Godlevsky
, and
K. M.
Rabe
,
Phys. Rev. B
65
,
014108
(
2001
).
28.
K.
Parlinski
and
M.
Parlinska-Wojtan
,
Phys. Rev. B
66
,
064307
(
2002
).
29.
P.
Souvatzis
,
D.
Legut
,
O.
Eriksson
, and
M. I.
Katsnelson
,
Phys. Rev. B
81
,
092201
(
2010
).
30.
N. A.
Zarkevich
and
D. D.
Johnson
,
Phys. Rev. B
90
,
060102
(
2014
).
31.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
32.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
33.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
34.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
36.
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
37.
J. M. G.
Fuentes
,
P.
Gümpel
, and
J.
Strittmatter
,
Adv. Eng. Mater.
4
,
437
(
2002
).
38.
G.
Bozzolo
,
R. D.
Noebe
, and
H. O.
Mosca
,
J. Alloys Compd.
386
,
125
(
2005
).
39.
G.
Bozzolo
,
R. D.
Noebe
, and
H. O.
Mosca
,
J. Alloys Compd.
389
,
80
(
2005
).
40.
R. D.
James
and
Z.
Zhang
, in
Magnetism and Structure in Functional Materials
, edited by
A.
Planes
,
L.
Mañosa
, and
A.
Saxena
(
Springer
,
Heidelberg
,
2005
), p.
159
.
41.
K.
Otsuka
and
X.
Ren
,
Mater. Sci. Eng. A
273
,
89
(
1999
).
42.
J. D.
Evans
,
Straightforward Statistics for the Behavioral Sciences
(
Brooks/Cole
,
1996
).
43.
C.
Chluba
,
W.
Ge
,
R. L.
de Miranda
,
J.
Strobel
,
L.
Kienle
,
E.
Quandt
, and
M.
Wuttig
,
Science
348
,
1004
(
2015
).
44.
W.
Tang
,
R.
Sandstrom
,
Z. G.
Wei
, and
S.
Miyazaki
,
Metall. Mater. Trans. A
31
,
2423
(
2000
).
45.
P. L.
Potapov
,
A. V.
Shelyakov
,
A. A.
Gulyaev
,
E. L.
Svistunov
,
N. M.
Matveeva
, and
D.
Hodgson
,
Mater. Lett.
32
,
247
(
1997
).
46.
J. J.
Wang
,
T.
Omori
,
Y.
Sutou
,
R.
Kainuma
, and
K.
Ishida
,
Scr. Mater.
52
,
311
(
2005
).
47.
J.
Frenzel
,
J.
Pfetzing
,
K.
Neuking
, and
G.
Eggeler
,
Mater. Sci. Eng. A
481-482
,
635
(
2008
).
48.
I.
Yoshida
,
D.
Monma
, and
T.
Ono
,
J. Alloys Compd.
448
,
349
(
2008
).
49.
M. S.
Choi
,
T.
Fukuda
,
T.
Kakeshita
, and
H.
Mori
,
Philos. Mag.
86
,
67
(
2006
).
50.
M.-S.
Choi
,
T.
Fukuda
, and
T.
Kakeshita
,
Scr. Mater.
53
,
869
(
2005
).
51.
M.-S.
Choi
,
T.
Yamamoto
,
T.
Fukuda
,
T.
Kakeshita
,
E.
Taguchi
, and
H.
Mori
,
Philos. Mag.
88
,
2449
(
2008
).
52.
W.-S.
Ko
,
S. B.
Maisel
,
B.
Grabowski
,
J. B.
Jeon
, and
J.
Neugebauer
,
Acta Mater.
123
,
90
(
2017
).
53.
S. B.
Maisel
,
W. S.
Ko
,
J. L.
Zhang
,
B.
Grabowski
, and
J.
Neugebauer
,
Phys. Rev. Mater.
1
,
033610
(
2017
).
54.
W.-S.
Ko
,
B.
Grabowski
, and
J.
Neugebauer
,
Phys. Rev. Mater.
2
,
030601
(
2018
).
55.
S. D.
Prokoshkin
,
A. V.
Korotitskiy
,
V.
Brailovski
,
S.
Turenne
,
I. Y.
Khmelevskaya
, and
I. B.
Trubitsyna
,
Acta Mater.
52
,
4479
(
2004
).
56.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
57.
E.
Wimmer
,
H.
Krakauer
,
M.
Weinert
, and
A. J.
Freeman
,
Phys. Rev. B
24
,
864
(
1981
).
58.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).

Supplementary Material

You do not currently have access to this content.