A reactor based on the association of a pulsed laser nanoparticle source and a pulsed laser deposition process is presented. This process uses two independent nano-second pulsed lasers. The nanoparticle source, based on a quenching of a plasma plume, is accurately described. Nanoparticles produced by this dedicated laser-based source present intrinsically quasi-monodisperse size in the range of 1–10 nm. This monodispersity is essential to correlate nanoparticle size and related properties. For silver nanoparticles, a change in a characteristic parameter, the opening t-time of the quenching valve, (conditioning the species residence time) from 280 μs to 580 μs, leads to a nanoparticle size increase by a factor of about two (from 2.5 nm to 4.3 nm). Consequently, the size modulation allows the synthesis of nanoparticles and resulting nanocomposites which present drastically different properties. A kinetic model in good agreement with the experiment shows two nanoparticle growth modes, i.e., a monomer accretion and a cluster coagulation. Revealing the potential of the pulsed laser reactor, different nanocomposite materials constituted by Ag nanoparticles associated with oxide thin films (Al2O3, VO2) matrix are optically characterized. A surface plasmon resonance (λSPR) in the visible–near IR regime is evidenced, and huge modulation and tunability are obtained linked to the host matrix nature and nanocomposite architecture. Moreover, the metal insulator transition capacity of a vanadium dioxide matrix makes λSPR tunable as a function of temperature. This type of nanocomposite appears pertinent for their great potential in both nano-photonics and nano-sensors.

1.
T. G.
Dietz
,
M. A.
Duncan
,
D. E.
Powers
, and
R. E.
Smalley
,
J. Chem. Phys.
74
,
6511
6512
(
1981
).
2.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O’Brien
,
R. F.
Curl
, and
R. E.
Smalley
,
Nature
318
,
162
163
(
1985
).
3.
R. E.
Smalley
,
Laser Chem.
2
,
167
184
(
1983
).
4.
P.
Milani
and
W. A.
DeHeer
,
Rev. Sci. Instrum.
61
,
1835
1838
(
1990
).
5.
M.
Obradovic
,
M.
Di Vece
,
D.
Grandjean
,
K.
Houben
, and
P.
Lievens
,
J. Phys. Condens. Matter
28
,
35303
(
2016
).
6.
A. L.
Stepanov
,
A.
Reinhodt
, and
U.
Kreibig
,
Nanotechnological Basis for Advanced Sensors
(
Springer
,
Dordrecht
,
2011
), pp.
381
389
.
7.
M.
Hillenkamp
,
S.
Oyarzún
,
N.
Troc
,
J.
Ramade
,
A.
Tamion
,
F.
Tournus
,
V.
Dupuis
, and
V.
Rodrigues
,
Eur. Phys. J. D
71
,
330
(
2017
).
8.
P.
Ferrari
,
L. M.
Molina
,
V. E.
Kaydashev
,
J. A.
Alonso
,
P.
Lievens
, and
E.
Janssens
,
Angew. Chem. Int. Ed.
55
,
11059
11063
(
2016
).
9.
D. B.
Chrisey
and
G. K.
Hubler
,
Pulsed Laser Deposition of Thin Films
(
J. Wiley
,
1994
).
10.
R.
Eason
,
Pulsed Laser Deposition of Thin Films: Applications-Led Growth OF Functional Materials
(
Wiley-Interscience
,
2007
).
11.
D.
Dijkkamp
,
T.
Venkatesan
,
X. D.
Wu
,
S. A.
Shaheen
,
N.
Jisrawi
,
Y. H.
Min-Lee
,
W. L.
McLean
, and
M.
Croft
,
Appl. Phys. Lett.
51
,
619
621
(
1987
).
12.
P.-M.
Geffroy
,
S.
Vedraine
,
F.
Dumas-Bouchiat
,
S. K.
Saha
,
A.
Gheno
,
F.
Rossignol
,
P.
Marchet
,
R.
Antony
,
J.
Bouclé
, and
B.
Ratier
,
J. Phys. Chem. C
120
,
28583
28590
(
2016
).
13.
A.
Ghalem
,
L.
Huitema
,
A.
Crunteanu
,
M.
Rammal
,
L.
Trupina
,
L.
Nedelcu
,
M. G.
Banciu
,
P.
Dutheil
,
C.
Constantinescu
,
P.
Marchet
,
F.
Dumas-Bouchiat
, and
C.
Champeaux
,
J. Appl. Phys.
120
,
184101
(
2016
).
14.
F.
Dumas-Bouchiat
,
C.
Champeaux
,
A.
Catherinot
,
A.
Crunteanu
, and
P.
Blondy
,
Appl. Phys. Lett.
91
,
223505
(
2007
).
15.
P. W.
Fowler
and
D. B.
Redmond
,
Theor. Chim. Acta
83
,
367
375
(
1992
).
16.
J.
Woenckhaus
 et al.,
Rev. Sci. Instrum.
65
(
6
),
2019
2022
(
1994
).
17.
O. F.
Hagena
,
Rev. Sci. Instrum.
62
,
2038
(
1991
).
18.
O. F.
Hagena
,
Surf. Sci.
106
,
101
116
(
1981
).
19.
P.
Keghelian
, “Couches minces nanostructurées de silicium et de carbure de silicium préparées par dépôts de petits agrégats : structures et propriétés électroniques,” (
1998
), see http://www.theses.fr.
20.
A.
Perez
,
P.
Melinon
,
V.
Dupuis
,
P.
Jensen
,
B.
Prevel
, and
J.
Tuaillon
,
J. Phys. D. Appl. Phys.
30
,
709
721
(
1997
).
21.
F.
Dumas-Bouchiat
,
C.
Champeaux
,
A.
Catherinot
,
A.
Crunteanu
, and
P.
Blondy
,
J. Appl. Phys.
100
,
64304
(
2006
).
22.
F.
Dumas-Bouchiat
,
H. S.
Nagaraja
,
F.
Rossignol
,
C.
Champeaux
, and
A.
Catherinot
,
Appl. Surf. Sci.
247
,
76
82
(
2005
).
23.
H.
Haberland
,
Z.
Insepov
, and
M.
Moseler
,
Phys. Rev. B
51
,
11061
11067
(
1995
).
24.
K.
Meinander
,
K.
Nordlund
, and
J.
Keinonen
,
Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
242
,
161
163
(
2006
).
25.
J. M.
Soler
,
N.
García
,
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
49
,
1857
1860
(
1982
).
26.
A. B.
Flores
,
L. A.
Robles
,
M. O.
Arias
, and
J. A.
Ascencio
,
Micron
34
,
109
118
(
2003
).
27.
M. Á.
Gracia-Pinilla
,
D.
Ferrer
,
S.
Mejía-Rosales
, and
E.
Pérez-Tijerina
,
Nanoscale Res. Lett.
4
,
896
902
(
2009
).
28.
Y.
Sun
,
S. K.
Gray
, and
S.
Peng
,
Phys. Chem. Chem. Phys.
13
,
11814
(
2011
).
29.
J. J.
De Yoreo
,
P. U.
Gilbert
,
N. A.
Sommerdijk
,
R. L.
Penn
,
S.
Whitelam
,
D.
Joester
,
H.
Zhang
,
J. D.
Rimer
,
A.
Navrotsky
,
J. F.
Banfield
,
A. F.
Wallace
,
F. M.
Michel
,
F. C.
Meldrum
,
H.
Cölfen
, and
P. M.
Dove
,
Science
349
,
6760
(
2015
).
30.
S.
Rives
,
A.
Catherinot
,
F.
Dumas-Bouchiat
,
C.
Champeaux
,
A.
Videcoq
, and
R.
Ferrando
,
Phys. Rev. B
77
,
85407
(
2008
).
31.
G.
Schmidl
,
J.
Dellith
,
H.
Schneidewind
,
D.
Zopf
,
O.
Stranik
,
A.
Gawlik
,
S.
Anders
,
V.
Tympel
,
C.
Katzer
,
F.
Schmidl
, and
W.
Fritzsche
,
Mater. Sci. Eng. B
193
,
207
216
(
2015
).
32.
N. G.
Bastús
,
J.
Piella
, and
V.
Puntes
,
Langmuir
32
,
290
300
(
2016
).
33.
34.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
4379
(
1972
).
35.
W.
Ekardt
,
Phys. Rev. B
29
,
1558
1564
(
1984
).
36.
M.
Gaudry
,
J.
Lermé
,
E.
Cottancin
,
M.
Pellarin
,
J.-L.
Vialle
,
M.
Broyer
,
B.
Prével
,
M.
Treilleux
, and
P.
Mélinon
,
Phys. Rev. B
64
,
85407
(
2001
).
37.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer
,
1995
), Vol. 25.
38.
F. J.
Morin
,
Phys. Rev. Lett.
3
,
34
(
1959
).
39.
O. L.
Muskens
,
G.
Bachelier
,
N. D.
Fatti
,
F.
Vallée
,
A.
Brioude
,
X.
Jiang
, and
M.-P.
Pileni
,
J. Phys. Chem. C
112
,
8917
8921
(
2008
).
40.
G.
Xu
,
C.-M.
Huang
,
M.
Tazawa
,
P.
Jin
, and
D.-M.
Chen
,
J. Appl. Phys
104
,
53102
(
2008
).
You do not currently have access to this content.