Interfacial thermal resistance between metal and dielectric materials is a bottleneck of the thermal management for modern integrated circuits as interface density increases with thinner films. In this work, we have observed that the interfacial resistance across gold and aluminum oxide can be reduced from 4.8×108m2K/W to 1.4×108m2K/W after adding a nickel layer in between, which represents a 70% reduction. The two temperature model is applied to explain the reduction of interfacial resistance, and the results show that the nickel layer functions as a bridge that reduces the phonon mismatch between gold and aluminum oxide. Moreover, nickel has strong electron-phonon coupling, which reduces the thermal resistance caused by the weak electron-phonon coupling in gold.

1.
S.-M.
Lee
and
D. G.
Cahill
,
J. Appl. Phys.
81
,
2590
(
1997
).
2.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
3.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
,
J. Heat Transfer
127
,
315
(
2005
).
4.
A. J.
Griffin
,
F. R.
Brotzen
, and
P. J.
Loos
,
J. Appl. Phys.
75
,
3761
(
1994
).
5.
J. H.
Kim
,
A.
Feldman
, and
D.
Novotny
,
J. Appl. Phys.
86
,
3959
(
1999
).
6.
B.A.
Cola
,
J.
Xu
,
C.
Cheng
,
X.
Xu
,
T. S.
Fisher
, and
H.
Hu
,
J. Appl. Phys.
101
,
1
(
2007
).
7.
C.
Dames
,
J. Appl. Phys.
95
,
682
(
2004
).
8.
R. S.
Prasher
and
P. E.
Phelan
,
J. Heat Transfer
123
,
105
(
2001
).
9.
L.
Pan
and
D. B.
Bogy
,
Nat. Photonics
3
,
189
(
2009
).
10.
W.
Challener
,
C.
Peng
,
A.
Itagi
,
D.
Karns
,
W.
Peng
,
Y.
Peng
,
X.
Yang
,
X.
Zhu
,
N.
Gokemeijer
,
Y.-T.
Hsia
et al.,
Nat. Photonics
3
,
220
(
2009
).
11.
M. A.
Seigler
,
W. A.
Challener
,
E.
Gage
,
N.
Gokemeijer
,
G.
Ju
,
B.
Lu
,
K.
Pelhos
,
C.
Peng
,
R. E.
Rottmayer
,
X.
Yang
et al.,
IEEE Trans. Magn.
44
,
119
(
2008
).
12.
Y.
Xu
,
H.
Wang
,
Y.
Tanaka
,
M.
Shimono
, and
M.
Yamazaki
,
Mater. Trans.
48
,
148
(
2007
).
13.
M.
Specht
,
H.
Reisinger
,
F.
Hofmann
,
T.
Schulz
,
E.
Landgraf
,
R.
Luyken
,
W.
Rsner
,
M.
Grieb
, and
L.
Risch
,
Solid State Electron.
49
,
716
(
2005
), 5th International Workshop on the Ultimate Intergration of Silicon, ULIS 2004.
14.
P.
Ye
,
B.
Yang
,
K.
Ng
,
J.
Bude
,
G.
Wilk
,
S.
Halder
, and
J.
Hwang
,
Appl. Phys. Lett.
86
,
063501
(
2005
).
15.
A.
Lahmar
,
T. P.
Nguyen
,
D.
Sakami
,
S.
Orain
,
Y.
Scudeller
, and
F.
Danes
,
Thin Solid Films
389
,
167
(
2001
).
16.
T. S.
English
,
J. C.
Duda
,
J. L.
Smoyer
,
D. A.
Jordan
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Phys. Rev. B
85
,
035438
(
2012
).
17.
M.
Jeong
,
J. P.
Freedman
,
H. J.
Liang
,
C.-M.
Chow
,
V. M.
Sokalski
,
J. A.
Bain
, and
J. A.
Malen
,
Phys. Rev. Appl.
5
,
014009
(
2016
).
18.
Y.
Wang
,
Z.
Lu
,
A. K.
Roy
, and
X.
Ruan
,
J. Appl. Phys.
119
,
065103
(
2016
).
19.
W.
Kern
and
D. A.
Puotinen
,
RCA Rev.
31
,
187
(
1970
).
20.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
,
Rev. Sci. Instrum.
72
,
2139
(
2001
).
21.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
22.
D. G.
Cahill
,
J. Vac. Sci. Technol. A
7
,
1259
(
1989
).
23.
M. E.
DeCoster
,
K. E.
Meyer
,
B. D.
Piercy
,
J. T.
Gaskins
,
B. F.
Donovan
,
A.
Giri
,
N. A.
Strnad
,
D. M.
Potrepka
,
A. A.
Wilson
,
M. D.
Losego
, and
P. E.
Hopkins
,
Thin Solid Films
650
,
71
(
2018
).
24.
A.
Majumdar
and
P.
Reddy
,
Appl. Phys. Lett.
84
,
4768
(
2004
).
25.
D. M.
Duffy
and
A. M.
Rutherford
,
J. Phys. Condens. Matter
19
,
16207
(
2007
).
26.
Z.
Lin
,
L.
Zhigilei
, and
V.
Celli
,
Phys. Rev. B
77
,
075133
(
2008
).
27.
L.
Koči
,
E. M.
Bringa
,
D. S.
Ivanov
,
J.
Hawreliak
,
J.
McNaney
,
A.
Higginbotham
,
L. V.
Zhigilei
,
A. B.
Belonoshko
,
B. A.
Remington
, and
R.
Ahuja
,
Phys. Rev. B
74
,
012101
(
2006
).
28.
R. E.
Jones
,
J. A.
Templeton
,
G. J.
Wagner
,
D.
Olmsted
, and
N. A.
Modine
,
Int. J. Numer. Methods Eng.
83
,
940
(
2010
).
29.
Y.
Wang
,
X.
Ruan
, and
A. K.
Roy
,
Phys. Rev. B
85
,
205311
(
2012
).
30.
Z.
Li
,
S.
Tan
,
E.
Bozorg-Grayeli
,
T.
Kodama
,
M.
Asheghi
,
G.
Delgado
,
M.
Panzer
,
A.
Pokrovsky
,
D.
Wack
, and
K. E.
Goodson
,
Nano Lett.
12
,
3121
(
2012
).
31.
A.
Sergeev
,
Phys. Rev. B Condens. Matter Mater. Phys.
58
,
R10199
(
1998
).
32.
A.
Sergeev
,
Phys. B Condens. Matter
263–264
,
217
(
1999
).
33.
W. A.
Little
,
Can. J. Phys.
37
,
334
(
1959
).
34.
E.
Swartz
and
R.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
35.
P.
Heino
and
E.
Ristolainen
,
Microelectronics J.
34
,
773
(
2003
).
36.
L.
Chen
,
N.
Kumari
, and
Y.
Hou
,
AIP Adv.
7
,
115205
(
2017
).
37.
T.
Fisher
, Thermal Energy at the Nanoscale, Lessons from Nanoscience: A Lecture Notes Series Vol. 3 (World Scientific, 2013).
38.
C. L.
Phillips
and
P. S.
Crozier
,
J. Chem. Phys.
131
,
074701
(
2009
).
39.
Y.
Wang
,
Z.
Lu
, and
X.
Ruan
,
J. Appl. Phys.
119
,
225109
(
2016
).
40.
J.
Bearden
and
J.
Thomsen
,
American Institute of Physics Handbook
(
McGraw-Hill
,
New York
,
1972
).
41.
M.
van Kampen
,
J. T.
Kohlhepp
,
W. J. M.
de Jonge
,
B.
Koopmans
, and
R.
Coehoorn
,
J. Phys. Condens. Matter
17
,
6823
(
2005
).
42.
S.
Link
,
C.
Burda
,
Z. L.
Wang
, and
M. A.
El-Sayed
,
J. Chem. Phys.
111
,
1255
(
1999
).
43.
A.
Lahmar
,
N.
Hmina
,
Y.
Scudeller
, and
J.
Bardon
,
Thin Solid Films
325
,
156
(
1998
).
44.
T. P.
Nguyen
,
J.
Ip
,
P.
Le Rendu
, and
A.
Lahmar
,
Surf. Coatings Technol.
141
,
108
(
2001
).
You do not currently have access to this content.