In this work, we study the nonlinear coupling between the transverse modes of nanoresonators such as nanotubes or nanowires in a singly clamped configuration. We previously showed that at high driving, this coupling could result in a transition from independent planar modes to a locked elliptical motion, with important modifications of the resonance curves. Here, we clarify the physical origins, associated with a 1:1 internal resonance, and study in depth this transition as a function of the relevant parameters. We present simple formulae that permit to predict the emergence of this transition as a function of the frequency difference between the polarizations and the nonlinear coefficients and give the “backbone curves” corresponding to the elliptical regime. We also show that the elliptical regime is associated with the emergence of a new set of solutions of which one branch is stable. Finally, we compare single and double clamped configurations and explain why the elliptical transition appears on different polarizations.

1.
H. W. Ch.
Postma
,
I.
Kozinsky
,
A.
Husain
, and
M. L.
Roukes
,
Appl. Phys. Lett.
86
,
223105
(
2005
).
2.
M. H.
Matheny
,
L. G.
Villanueva
,
R. B.
Karabalin
,
J. E.
Sader
, and
M. L.
Roukes
,
Nano Lett.
13
,
1622
(
2013
).
3.
R. B.
Karabalin
,
M. C.
Cross
, and
M. L.
Roukes
,
Phys. Rev. B
79
,
165309
(
2009
).
4.
H. J. R.
Westra
,
M.
Poot
,
H. S. J.
van der Zant
, and
W. J.
Venstra
,
Phys. Rev. Lett.
105
,
117205
(
2010
).
5.
A.
Eichler
,
M.
del Alamo Ruiz
,
J. A.
Plaza
, and
A.
Bachtold
,
Phys. Rev. Lett.
109
,
025503
(
2012
).
6.
A. H.
Nayfeh
,
Nonlinear Interactions
(
John Wiley & Sons
,
2000
).
7.
R.
Kuether
,
L.
Renson
,
T.
Detroux
,
C.
Grappasonni
,
G.
Kerschen
, and
M. S.
Allen
,
J. Sound Vib.
351
,
299
(
2016
).
8.
M.
Monteil
,
O.
Thomas
, and
C.
Touzé
,
Appl. Acoust.
89
,
1
(
2015
).
9.
M.
Jossic
,
B.
Chomette
,
V.
Denis
,
O.
Thomas
,
A.
Mamou-Mani
, and
D.
Roze
,
J. Acoust. Soc. Am.
144
,
431
(
2018
).
10.
C.
Chen
,
D. H.
Zanette
,
D. A.
Czaplewski
,
S.
Shaw
, and
D.
López
,
Nat. Comm.
8
,
15523
(
2017
).
11.
A. Z.
Hajjaj
,
M. A.
Hafiz
, and
M. I.
Younis
,
Sci. Rep.
7
,
41820
(
2017
).
12.
P.
Taheri-Tehrani
,
A.
Guerrieri
,
M.
Defoort
,
A.
Frangi
, and
D. A.
Horsley
,
Appl. Phys. Lett.
111
,
183505
(
2017
).
13.
S. I.
Chang
,
A. K.
Bajaj
, and
C. M.
Krousgrill
,
Nonlinear Dyn.
4
,
433
(
1993
).
14.
O.
Thomas
,
C.
Touzé
, and
A.
Chaigne
,
J. Sound Vib.
265
,
1075
(
2003
).
15.
O.
Thomas
,
A.
Lazarus
, and
C.
Touzé
, in Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2010 (ASME Digital Collection, Montreal, 2010).
16.
C. H.
Ho
,
R. A.
Scott
, and
J. G.
Eisley
,
Int. J. Non-Linear Mech.
10
,
113
(
1975
).
17.
C. H.
Ho
,
R. A.
Scott
, and
J. G.
Eisley
,
J. Sound Vib.
47
,
333
(
1976
).
18.
F.
Pai
and
A. H.
Nayfeh
,
Int. J. Non-Linear Mech.
25
,
455
(
1990
).
19.
W. K.
Lee
,
K. S.
Lee
, and
C. H.
Pak
,
Nonlinear Dyn.
52
,
217
(
2008
).
20.
S.
Perisanu
,
T.
Barois
,
A.
Ayari
,
P.
Poncharal
,
M.
Choueib
,
S. T.
Purcell
, and
P.
Vincent
,
Phys. Rev. B
81
,
165440
(
2010
).
21.
R.
Arquier
,
S.
Karkar
,
A.
Lazarus
,
O.
Thomas
,
C.
Vergez
, and
B.
Cochelin
, Manlab 2.0: An interactive path-following and bifurcation analysis software, Technical Report, Laboratoire de Mécanique et d’Acoustique, CNRS, see http://manlab.lma.cnrs-mrs.fr, 2005–2011.
22.
B.
Cochelin
and
C.
Vergez
,
J. Sound Vib.
324
,
243
(
2009
).
23.
A.
Lazarus
and
O.
Thomas
,
C. R. Mecanique
338
,
510
(
2010
).
24.
B.
Bentvelsen
and
A.
Lazarus
,
Nonlinear Dyn.
91
,
1349
(
2018
).
25.
S.
Perisanu
,
P.
Vincent
,
A.
Ayari
,
M.
Choueib
,
D.
Guillot
,
M.
Bechelany
,
D.
Cornu
,
P.
Miele
, and
S. T.
Purcell
,
Phys. Status Solidi A
204
,
1645
(
2007
).
26.
S.
Perisanu
,
V.
Gouttenoire
,
P.
Vincent
,
A.
Ayari
,
M.
Choueib
,
M.
Bechelany
,
D.
Cornu
, and
S. T.
Purcell
,
Phys. Rev. B
77
,
165434
(
2008
).
27.
Figures 2(a) and 2(b) have been obtained by solving the following two equations where the coupling terms between polarizations has been removed: (1+βx2)x¨+1Qx˙+(1+αx2+βx˙2)x=F1cos(Ωt), (1+βy2)y¨+1Qy˙+(1+2μ+αy2+βy˙2)y=F2cos(Ωt).
28.
A. I.
Manevitch
and
L. I.
Manevitch
,
Meccanica
38
,
335
(
2003
).
29.
C.
Touzé
,
O.
Thomas
, and
A.
Chaigne
,
J. Sound Vib.
258
,
649
(
2002
).
30.
W.
Lacarbonara
,
Nonlinear Structural Mechanics
(
Springer
,
2013
).
31.
N.
Kacem
,
J.
Arcamone
,
F.
Perez-Murano
, and
S.
Hentz
,
J. Micromech. Microeng.
20
,
045023
(
2010
).
32.
L. G.
Villanueva
,
R. B.
Karabalin
,
M. H.
Matheny
,
D.
Chi
,
J. E.
Sader
, and
M. L.
Roukes
,
Phys. Rev. B
87
,
024304
(
2013
).
33.
S. T.
Purcell
,
P.
Vincent
,
C.
Journet
, and
V. T.
Binh
,
Phys. Rev. Lett.
89
,
276103
(
2002
).
34.
A.
Descombin
,
P.
Poncharal
,
A.
Pascale-Hamri
,
M.
Choueib
,
R.
Diehl
,
P.
Vincent
,
S. T.
Purcell
, and
S.
Perisanu
“Giant, voltage tuned, Q-factors of single wall carbon nanotubes and graphene at room temperature” (to be published).
35.
I.
Kozinsky
,
H. W. Ch.
Postma
,
O.
Kogan
,
A.
Husain
, and
M. L.
Roukes
,
Phys. Rev. Lett.
99
,
207201
(
2007
).
36.
I.
Mahboob
and
H.
Yamaguchi
,
Nature Nanotech.
3
,
275
(
2008
).
37.
W. G.
Conley
,
A.
Raman
,
C. M.
Krousgrill
, and
S.
Mohammad
,
Nano Lett.
8
,
1590
(
2008
).

Supplementary Material

You do not currently have access to this content.