We propose a thermodynamically consistent rate-independent three-dimensional model of magnetic hysteresis in terms of energetic and dissipation potentials making use of a relatively small number of model parameters that is capable of being implemented in a general incremental numerical setting. The dissipation process occurring during magnetization/demagnetization is described by a power-law potential, which leads to rate-independence at a certain limit of the rate-dependent exponent. The incorporation of isotropic hardening in the model enables us to describe phenomenologically at the macroscopic scale both nucleation and pinning type constitutive responses. We further model the symmetric and asymmetric minor loops by employing the idea of a bounding surface, which was originally introduced in the context of mechanical plasticity. Our model shows a very good agreement with experiments for spark plasma sintered NdFeB magnets, where nucleation is found to be the primary mechanism of coercivity. We also use our model to probe experiments for melt-spun NdFeB ribbons and powders, where both nucleation and pinning mechanisms are experimentally found to be significant. Moreover, we correlate the proposed model parameters with the underlying mechanisms for coercivity. We investigate the predictive capability of the proposed model by first probing an experimental minor loop and then use it to successfully predict the remaining minor loops, obtained from that experiment. We also construct a first-order reversal curve diagram for the floppy disk material and compare it with the corresponding experimental data.

1.
G. C.
Hadjipanayis
and
W.
Gong
,
J. Appl. Phys.
64
,
5559
(
1988
).
2.
Z.
Gao
,
D. C.
Jiles
,
D. J.
Branagan
, and
R. W.
McCallum
,
J. Appl. Phys.
79
,
5510
(
1996
).
3.
Z.
Liu
,
H.
Huang
,
X.
Gao
,
H.
Yu
,
X.
Zhong
,
J.
Zhu
, and
D.
Zeng
,
J. Phys. D Appl. Phys.
44
,
025003
(
2010
).
4.
E.
Périgo
,
M.
de Campos
,
R.
Faria
, and
F.
Landgraf
,
Powder Technol.
224
,
291
(
2012
).
5.
X.
Deng
,
Z.
Liu
,
H.
Yu
,
Z.
Xiao
, and
G.
Zhang
,
J. Magn. Magn. Mater.
390
,
26
(
2015
).
6.
Y.
Huang
,
Y.
Wang
,
Y.
Hou
,
Y.
Wang
,
Y.
Wu
,
S.
Ma
,
Z.
Liu
,
D.
Zeng
,
Y.
Tian
,
W.
Xia
et al.,
J. Magn. Magn. Mater.
399
,
175
(
2016
).
7.
J. M.
Linke
,
D. Y.
Borin
, and
S.
Odenbach
,
RSC Adv.
6
,
100407
(
2016
).
8.
M.
Schümann
,
D.
Borin
,
S.
Huang
,
G.
Auernhammer
,
R.
Müller
, and
S.
Odenbach
,
Smart Mater. Struct.
26
,
095018
(
2017
).
9.
Q.
Wen
,
Y.
Wang
, and
X.
Gong
,
Smart Mater. Struct.
26
,
075012
(
2017
).
10.
P. A.
Sánchez
,
T.
Gundermann
,
A.
Dobroserdova
,
S. S.
Kantorovich
, and
S.
Odenbach
,
Soft Matter
14
,
2170
(
2018
).
11.
J. E.
Huber
,
N. A.
Fleck
,
C. M.
Landis
, and
R. M.
McMeeking
,
J. Mech. Phys. Solids
47
,
1663
(
1999
).
12.
A. C.
Cocks
and
R. M.
Mcmeeking
,
Ferroelectrics
228
,
219
(
1999
).
13.
R. M.
McMeeking
and
C. M.
Landis
,
Int. J. Eng. Sci.
40
,
1553
(
2002
).
14.
C. M.
Landis
,
J. Mech. Phys. Solids
50
,
127
(
2002
).
15.
S.
Klinkel
,
Int. J. Solids Struct.
43
,
7197
(
2006
).
16.
K.
Linnemann
,
S.
Klinkel
, and
W.
Wagner
,
Int. J. Solids Struct.
46
,
1149
(
2009
).
17.
C.
Miehe
,
D.
Rosato
, and
B.
Kiefer
,
Int. J. Numer. Methods Eng.
86
,
1225
(
2011
).
18.
H.
Kronmüller
,
K.-D.
Durst
, and
M.
Sagawa
,
J. Magn. Magn. Mater.
74
,
291
(
1988
).
19.
H.
Kronmüller
, in Supermagnets, Hard Magnetic Materials, edited by G. J. Long and F. Grandjean (Springer, 1991), pp. 461–498.
20.
K.
Buschow
,
Rep. Prog. Phys.
54
,
1123
(
1991
).
21.
D.
Givord
,
M.
Rossignol
, and
D.
Taylor
,
J. Phys. IV
2
,
C3
(
1992
).
22.
J.
Fidler
and
T.
Schrefl
,
J. Appl. Phys.
79
,
5029
(
1996
).
23.
K.
Honda
and
S.
Saitô
,
Phys. Rev.
16
,
495
(
1920
).
24.
H.
Li
,
Y.
Liang
,
X.
Tan
,
H.
Xu
,
P.
Hu
, and
K.
Ren
,
Materials
10
,
1062
(
2017
).
25.
26.
27.
D.
Jiles
and
D.
Atherton
,
J. Magn. Magn. Mater.
61
,
48
(
1986
).
28.
Q.
Jiang
,
J. Mech. Phys. Solids
41
,
1599
(
1993
).
30.
R. E.
Logé
and
Z.
Suo
,
Acta Mater.
44
,
3429
(
1996
).
31.
A.
Bergqvist
,
Phys. B Condens. Matter
233
,
342
(
1997
).
32.
S.
Hwang
,
C.
Lynch
, and
R.
McMeeking
,
Acta Mater.
43
,
2073
(
1995
).
33.
S. C.
Hwang
and
R. M.
Mcmeeking
,
Ferroelectrics
207
,
465
(
1998
).
34.
S. C.
Hwang
and
R. M.
McMeeking
,
Ferroelectrics
211
,
177
(
1998
).
35.
R. C.
Smith
,
M. J.
Dapino
, and
S.
Seelecke
,
J. Appl. Phys.
93
,
458
(
2003
).
36.
R. C.
Smith
,
S.
Seelecke
,
M.
Dapino
, and
Z.
Ounaies
,
J. Mech. Phys. Solids
54
,
46
(
2006
).
37.
J. E.
Huber
and
N. A.
Fleck
,
J. Mech. Phys. Solids
49
,
785
(
2001
).
38.
K.
Bhattacharya
and
G.
Ravichandran
,
Acta Mater.
51
,
5941
(
2003
).
39.
Z.
Włodarski
,
J. Magn. Magn. Mater.
308
,
15
(
2007
).
40.
A.
Benabou
,
J.
Leite
,
S.
Clénet
,
C.
Simão
, and
N.
Sadowski
,
J. Magn. Magn. Mater.
320
,
e1034
(
2008
).
41.
V.
François-Lavet
,
F.
Henrotte
,
L.
Stainier
,
L.
Noels
, and
C.
Geuzaine
,
J. Comput. Appl. Math.
246
,
243
(
2013
).
42.
K. A.
Kalina
,
J.
Brummund
,
P.
Metsch
,
M.
Kästner
,
D. Y.
Borin
,
J. M.
Linke
, and
S.
Odenbach
,
Smart Mater. Struct.
26
,
105019
(
2017
).
43.
Y. F.
Dafalias
and
E. P.
Popov
,
Acta Mech.
21
,
173
(
1975
).
44.
Y. F.
Dafalias
and
E. P.
Popov
,
J. Appl. Mech.
43
,
645
(
1976
).
45.
Y. F.
Dafalias
and
E. P.
Popov
,
Nucl. Eng. Des.
41
,
293
(
1977
).
46.
J.
Chaboche
,
K. D.
Van
, and
G.
Cordier
, in Proceedings SMIRT-5, Division L. (North-Holland Pub. Co., Berlin, 1979).
47.
J.-L.
Chaboche
,
Int. J. Plast.
2
,
149
(
1986
).
48.
A.
Dorfmann
and
R.
Ogden
,
Eur. J. Mech. A Solids
22
,
497
(
2003
).
49.
A.
Dorfmann
and
R.
Ogden
,
Acta Mech.
167
,
13
(
2004
).
50.
A.
Dorfmann
and
R.
Ogden
,
Z. Angew. Math. Phys.
56
,
718
(
2005
).
51.
K.
Danas
,
J. Mech. Phys. Solids
105
,
25
(
2017
).
52.
S.
Kankanala
and
N.
Triantafyllidis
,
J. Mech. Phys. Solids
52
,
2869
(
2004
).
53.
M.-A.
Keip
and
A.
Sridhar
,
J. Mech. Phys. Solids
161
,
124
(
2018
).
54.
D.
Rosato
and
C.
Miehe
,
Int. J. Eng. Sci.
74
,
162
(
2014
).
55.
B.
Halphen
and
Q.
Son Nguyen
,
J. Mécanique
14
,
39
(
1975
).
56.
P.
Germain
,
Q. S.
Nguyen
, and
P.
Suquet
,
J. Appl. Mech.
50
,
1010
(
1983
).
57.
H.
Hauser
,
J. Appl. Phys.
75
,
2584
(
1994
).
58.
H.
Hauser
,
J. Appl. Phys.
96
,
2753
(
2004
).
59.
K.
Danas
,
V. S.
Deshpande
, and
N. A.
Fleck
,
J. Mech. Phys. Solids
60
,
1605
(
2012
).
60.
A.
Avakian
and
A.
Ricoeur
,
J. Appl. Phys.
121
,
053901
(
2017
).
61.
62.
P. L.
Fulmek
and
H.
Hauser
,
J. Magn. Magn. Mater.
160
,
35
(
1996
).
63.
J. C.
Martínez-García
,
M.
Rivas
,
D.
Lago-Cachón
, and
J.
García
,
J. Phys. D Appl. Phys.
47
,
015001
(
2013
).
64.
K.
Danas
,
S.
Kankanala
, and
N.
Triantafyllidis
,
J. Mech. Phys. Solids
60
,
120
(
2012
).
65.
E.
Psarra
,
L.
Bodelot
, and
K.
Danas
,
Soft Matter
13
,
6576
(
2017
).
66.
L.
Bodelot
,
J.-P.
Voropaieff
, and
T.
Pössinger
,
Exp. Mech.
58
,
207
(
2017
).
67.
T.
Miyamoto
,
H.
Sakurai
,
H.
Takabayashi
, and
M.
Aoki
,
IEEE Trans. Magn.
25
,
3907
(
1989
).
68.
J. M.
Ginder
,
M. E.
Nichols
,
L. D.
Elie
, and
J. L.
Tardiff
, in Smart Structures and Materials 1999: Smart Materials Technologies (International Society for Optics and Photonics, 1999), Vol. 3675, pp. 131–139.
69.
M.
Ortiz
and
J.
Simo
,
Int. J. Numer. Methods Eng.
23
,
353
(
1986
).
70.
MATLAB, version 9.2.0.538062 (R2017a) (The MathWorks Inc., Natick, MA, 2017).
71.
C. R.
Pike
,
A. P.
Roberts
, and
K. L.
Verosub
,
J. Appl. Phys.
85
,
6660
(
1999
).
72.
J.
Liu
,
H.
Sepehri-Amin
,
T.
Ohkubo
,
K.
Hioki
,
A.
Hattori
,
T.
Schrefl
, and
K.
Hono
,
Acta Mater.
61
,
5387
(
2013
).
73.
C. R.
Pike
,
Phys. Rev. B
68
,
104424
(
2003
).
74.
M.
Pohlit
,
P.
Eibisch
,
M.
Akbari
,
F.
Porrati
,
M.
Huth
, and
J.
Müller
,
Rev. Sci. Instrum.
87
,
113907
(
2016
).
75.
C.
Pike
and
A.
Fernandez
,
J. Appl. Phys.
85
,
6668
(
1999
).
76.
A. P.
Roberts
,
C. R.
Pike
, and
K. L.
Verosub
,
J. Geophys. Res. Solid Earth
105
,
28461
(
2000
).
77.
A. J.
Newell
,
Geochem. Geophys. Geosyst.
6
,
Q05010
(
2005
).
78.
C. R.
Pike
,
C. A.
Ross
,
R. T.
Scalettar
, and
G.
Zimanyi
,
Phys. Rev. B
71
,
134407
(
2005
).
79.
A. P.
Roberts
,
D.
Heslop
,
X.
Zhao
, and
C. R.
Pike
,
Rev. Geophys.
52
,
557
(
2014
).
You do not currently have access to this content.