Ge-on-Si and Ge-on-insulator (GeOI) are the most promising materials for the next-generation nanoelectronics that can be fully integrated with silicon technology. To this day, the fabrication of Ge-based transistors with a n-type channel doping above 5 × 1019 cm−3 remains challenging. Here, we report on n-type doping of Ge beyond the equilibrium solubility limit (ne ≈ 6 × 1020 cm−3) together with a nanoscale technique to inspect the dopant distribution in n++-p junctions in GeOI. The n++ layer in Ge is realized by P+ ion implantation followed by millisecond-flashlamp annealing. The electron concentration is found to be three times higher than the equilibrium solid solubility limit of P in Ge determined at 800 °C. The millisecond-flashlamp annealing process is used for the electrical activation of the implanted P dopant and to fully suppress its diffusion. The study of the P activation and distribution in implanted GeOI relies on the combination of Raman spectroscopy, conductive atomic force microscopy, and secondary ion mass spectrometry. The linear dependence between the Fano asymmetry parameter q and the active carrier concentration makes Raman spectroscopy a powerful tool to study the electrical properties of semiconductors. We also demonstrate the high electrical activation efficiency together with the formation of ohmic contacts through Ni germanidation via a single-step flashlamp annealing process.

1.
See https://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/ for more information about next generation electronics. See Section 2: Heterogeneous Integration and Section 6: Beyond CMOS.
2.
V.
Deshpande
,
V.
Djara
,
E.
O’Connor
,
P.
Hashemi
,
T.
Morf
,
K.
Balakrishnan
,
D.
Caimi
,
M.
Sousa
,
J.
Fompeyrine
, and
L.
Czornomaz
,
Jpn. J. Appl. Phys.
56
,
04CA05
(
2017
).
3.
T. E.
Kazior
,
Phil. Trans. R. Soc. A
372
,
20130105
(
2014
).
4.
J.
Liu
,
L. C.
Kimerling
, and
J.
Michel
,
Semicond. Sci. Technol.
27
,
094006
(
2012
).
5.
R.
Yu
 et al.,
Phys. Status Solidi RRL
8
,
65
68
(
2014
).
6.
P.
Chaisakul
,
D.
Marris-Morini
,
J.
Frigerio
,
D.
Chrastina
,
M.-S.
Rouifed
,
S.
Cecchi
,
P.
Crozat
,
G.
Isella
, and
L.
Vivien
,
Nat. Photonics
8
,
4826
(
2014
).
7.
S.
Prucnal
 et al.,
Semicond. Sci. Technol.
31
,
105012
(
2016
).
8.
T.
Sadoh
,
Y.
Kai
,
R.
Matsumura
,
K.
Moto
, and
M.
Miyao
,
Appl. Phys. Lett.
109
,
232106
(
2016
).
9.
J.
Greil
,
A.
Lugstein
,
C.
Zeiner
,
G.
Strasser
, and
E.
Bertagnolli
,
Nano Lett.
12
,
6230
(
2012
).
10.
Y.-C.
Fang
,
K.-Y.
Chen
,
C.-H.
Hsieh
,
C.-C.
Su
, and
Y.-H.
Wu
,
ACS Appl. Mater. Interfaces
7
,
26374
26380
(
2015
).
11.
J.
Kim
,
S. W.
Bedell
, and
D. K.
Sadana
,
Appl. Phys. Lett.
101
,
112107
(
2012
).
12.
G.
Mattoni
,
W. M.
Klesse
,
G.
Capellini
,
M. Y.
Simmons
, and
G.
Scappucci
,
ACS Nano
7
,
11310
11316
(
2013
).
13.
S.-H.
Huang
,
F.-L.
Lu
,
W.-L.
Huang
,
C.-H.
Huang
, and
C. W.
Liu
,
IEEE Electron Device Lett.
36
,
1114
(
2015
).
14.
S.
Prucnal
 et al.,
Sci. Rep.
6
,
27643
(
2016
).
15.
H.
Tanimura
 et al.,
MRS Adv.
2
,
2921
(
2017
).
16.
S.-S.
Chuang
,
T.-C.
Cho
,
P.-J.
Sung
,
K.-H.
Kao
,
H. J. H.
Chen
,
Y.-J.
Lee
,
M. I.
Current
, and
T.-Y.
Tseng
,
ECS J. Solid State Sci. Technol.
6
,
P350
P355
(
2017
).
17.
X.
Ou
,
P.
Das Kanungo
,
R.
Kögler
,
P.
Werner
,
U.
Gösele
,
W.
Skorupa
, and
X.
Wang
,
Nano Lett.
10
,
171
175
(
2010
).
18.
A.
Vandooren
,
D.
Leonelli
,
R.
Rooyackers
,
A.
Hikavyy
,
K.
Devriendt
,
M.
Demand
,
R.
Loo
,
G.
Groeseneken
, and
C.
Huyghebaert
,
Solid State Electron.
83
,
50
55
(
2013
).
19.
A.
Schulze
,
A. S.
Verhulst
,
A.
Nazir
,
T.
Hantschel
,
P.
Eyben
, and
W. A.
Vandervorst
,
J. Appl. Phys.
113
,
114310
(
2013
).
20.
B.
Sermage
,
Z.
Essa
,
N.
Taleb
,
M.
Quillec
,
J.
Aubin
,
J. M.
Hartmann
, and
M.
Veillerot
,
J. Appl. Phys.
119
,
155703
(
2016
).
21.
G.
Contreras
,
A.
Compaan
, and
A.
Axmann
,
J. Phys. Colloques
44
(
C5
),
C5-193
C5-195
(
1983
).
22.
N.
Fukata
,
Phys. Status Solidi C
11
,
320
330
(
2014
).
23.
N.
Fukata
,
Adv. Mater.
21
,
2829
2832
(
2009
).
24.
N.
Fukata
,
M.
Yu
,
W.
Jevasuwan
,
T.
Takei
,
Y.
Bando
,
W.
Wu
, and
Z. L.
Wang
,
ACS Nano
9
,
12182
12188
(
2015
).
25.
K.
Gallacher
,
P.
Velha
,
D. J.
Paul
,
I.
MacLaren
,
M.
Myronov
, and
D. R.
Leadley
,
Appl. Phys. Lett.
100
,
022113
(
2012
).
26.
S.
Prucnal
 et al.,
Semicond. Sci. Technol.
32
,
115006
(
2017
).
27.
S.
Prucnal
,
L.
Rebohle
, and
W.
Skorupa
,
Mater. Sci. Semicond. Process
62
,
115
127
(
2017
).
28.
R.
Milazzo
 et al.,
Appl. Phys. Lett.
110
,
011905
(
2017
).
29.
J. F.
Ziegler
,
Nucl. Instrum. Methods. Phys. Res. B
219-220
,
1027
(
2004
).
30.
P.
Śpiewak
,
J.
Vanhellemont
,
K.
Sueoka
,
K. J.
Kurzydłowski
, and
I.
Romandic
,
J. Appl. Phys.
103
,
086103
(
2008
).
31.
R. D.
Rodriguez
,
E.
Sheremet
,
S.
Müller
,
O. D.
Gordan
,
A.
Villabona
,
S.
Schulze
,
M.
Hietschold
, and
D. R. T.
Zahn
,
Rev. Sci. Instrum.
83
,
123708
(
2012
).
32.
S. B. M.
Castro
,
S.
Barnola
, and
B.
Glück
,
J. Integr. Circuits Syst.
8
,
104
109
(
2013
).
33.
Y. H.
Lee
and
M.-M.
Chen
,
J. Vac. Sci. Technol. B
4
,
468
(
1986
).
34.
P. S.
Goley
and
M. K.
Hudait
,
Materials
7
,
2301
2339
(
2014
).
35.
N.
Fukata
,
K.
Sato
,
M.
Mitome
,
Y.
Bando
,
T.
Sekiguchi
,
M.
Kirkham
,
J.-I.
Hong
,
Z. L.
Wang
, and
R. L.
Snyder
,
ACS Nano
4
,
3807
3816
(
2010
).
36.
U.
Fano
,
Phys. Rev.
124
,
1866
1878
(
1961
).
37.
N.
Fukata
,
M.
Mitome
,
T.
Sekiguchi
,
Y.
Bando
,
M.
Kirkham
,
J.
Hong
,
Z. L.
Wang
, and
R. L.
Snyder
,
ACS Nano
6
,
8887
8895
(
2012
).
38.
S.
Prucnal
 et al.,
Phys. Rev. Appl.
10
,
064055
(
2018
).
39.
C.
Xu
,
C. L.
Senaratne
,
J.
Kouvetakis
, and
J.
Menendez
,
Phys. Rev. B
93
,
041201
(
2016
).
40.
A.
Boninelli
,
R.
Milazzo
,
R.
Carles
,
F.
Houdellier
,
R.
Duffy
,
K.
Huet
,
A.
La Magna
,
E.
Napolitani
, and
F.
Cristiano
,
APL Mater.
6
,
058504
(
2018
).
41.
A.
Chroneos
and
H.
Bracht
,
Appl. Phys. Rev.
1
,
011301
(
2014
).
42.
A.
Chroneos
,
Mater. Sci. Semicond. Process.
15
,
691
696
(
2012
).
You do not currently have access to this content.