The recent integration of III-V semiconductor nanowire (NW) lasers on silicon waveguides marked a key step toward their usage as coherent light sources for future silicon photonics applications. However, the low index contrast between III-V semiconductors and silicon results in a weak modal reflectivity, calling for improved design structures that enable both low-threshold lasing and good in-coupling efficiency into waveguides. Here, we perform numerical simulations to explore how the alternating refractive index of a silicon waveguide with a thin SiO2 interlayer can be used to significantly improve the reflectivity at the III-V–silicon interface to values of up to 83%. We further investigate the frequency dependencies of the end-facet reflectivity and in-coupling efficiency as a function of the nanowire and waveguide dimensions. Our results are kept general by the normalization to the nanowire radius R and show for a waveguide width of 2.75⋅R a maximum coupling efficiency of 50%. Variations in waveguide height or SiO2 interlayer thickness by ±0.1R increase the coupling efficiency by a factor of 2, with little effect on the end-facet reflectivity. Ultimately, a prototypical NW-laser structure consisting of a 1.3-μm emitting InGaAs MQW active region in a core-multishell structure was simulated, showing an optimized low-threshold gain of <500 cm−1 for a TE01 mode with a coupling efficiency of ∼13%. By simplified approximations, we illustrate that these analyses can be adapted to a variety of material systems and serve as guidelines in the construction of optimized nanowire lasers on silicon-on-insulator waveguides for future on-chip optical interconnects.

1.
R.
Soref
,
IEEE J. Sel. Top. Quantum Electron.
12
,
1678
(
2006
).
2.
D. A. B.
Miller
,
Proc. IEEE
97
,
1166
(
2009
).
3.
S. G.
Cloutier
,
P. A.
Kossyrev
, and
J.
Xu
,
Nat. Mater.
4
,
887
(
2005
).
4.
D.
Liang
and
J. E.
Bowers
,
Nat. Photonics
4
,
511
(
2010
).
5.
Z.
Zhou
,
B.
Yin
, and
J.
Michel
,
Light Sci. Appl.
4
,
358
(
2015
).
6.
G.
de Valicourt
,
C.
Chang
,
M. S.
Eggleston
,
A.
Melikyan
,
C.
Zhu
,
J.
Lee
,
J. E.
Simsarian
,
S.
Chandrasekhar
,
J. H.
Sinsky
,
K. W.
Kim
,
P.
Dong
,
A.
Maho
,
A.
Verdier
,
R.
Brenot
, and
Y. K.
Chen
,
J. Light. Technol.
36
,
265
(
2018
).
7.
G.-H.
Duan
,
C.
Jany
,
A.
Le Liepvre
,
A.
Accard
,
M.
Lamponi
,
D.
Make
,
P.
Kaspar
,
G.
Levaufre
,
N.
Girard
,
F.
Lelarge
,
J.-M.
Fedeli
,
S.
Messaoudene
,
D.
Bordel
, and
S.
Olivier
,
IEEE J. Sel. Top. Quantum Electron.
20
,
6100213
(
2014
).
8.
K. K.
Linder
,
J.
Phillips
,
O.
Qasaimeh
,
X. F.
Liu
,
S.
Krishna
,
P.
Bhattacharya
, and
J. C.
Jiang
,
Appl. Phys. Lett.
74
,
1355
(
1999
).
9.
Z.
Mi
,
P.
Bhattacharya
,
J.
Yang
, and
K. P.
Pipe
,
Electron. Lett.
41
,
742
(
2005
).
10.
A.
Lee
,
Q.
Jiang
,
M.
Tang
,
A.
Seeds
, and
H.
Liu
,
Opt. Express
20
,
22181
(
2012
).
11.
J. C.
Norman
,
D.
Jung
,
Y.
Wan
, and
J. E.
Bowers
,
APL Photonics
3
,
030901
(
2018
).
12.
S.
Chen
,
W.
Li
,
J.
Wu
,
Q.
Jiang
,
M.
Tang
,
S.
Shutts
,
S. N.
Elliott
,
A.
Sobiesierski
,
A. J.
Seeds
,
I.
Ross
,
P. M.
Smowton
, and
H.
Liu
,
Nat. Photonics
10
,
307
(
2016
).
13.
D.
Jung
,
Z.
Zhang
,
J.
Norman
,
R.
Herrick
,
M. J.
Kennedy
,
P.
Patel
,
K.
Turnlund
,
C.
Jan
,
Y.
Wan
,
A. C.
Gossard
, and
J. E.
Bowers
,
ACS Photonics
5
,
1094
(
2018
).
14.
D.
Jung
,
J.
Norman
,
M. J.
Kennedy
,
C.
Shang
,
B.
Shin
,
Y.
Wan
,
A. C.
Gossard
, and
J. E.
Bowers
,
Appl. Phys. Lett.
111
,
122107
(
2017
).
15.
J.
Norman
,
M. J.
Kennedy
,
J.
Selvidge
,
Q.
Li
,
Y.
Wan
,
A. Y.
Liu
,
P. G.
Callahan
,
M. P.
Echlin
,
T. M.
Pollock
,
K. M.
Lau
,
A. C.
Gossard
, and
J. E.
Bowers
,
Opt. Express
25
,
3927
(
2017
).
16.
Y.
Wan
,
J.
Norman
,
Q.
Li
,
M. J.
Kennedy
,
D.
Liang
,
C.
Zhang
,
D.
Huang
,
Z.
Zhang
,
A. Y.
Liu
,
A.
Torres
,
D.
Jung
,
A. C.
Gossard
,
E. L.
Hu
,
K. M.
Lau
, and
J. E.
Bowers
,
Optica
4
,
940
(
2017
).
17.
R.
Chen
,
T.-T. D.
Tran
,
K. W.
Ng
,
W. S.
Ko
,
L. C.
Chuang
,
F. G.
Sedgwick
, and
C.
Chang-Hasnain
,
Nat. Photonics
5
,
170
(
2011
).
18.
G. N.
Malheiros-Silveira
,
F.
Lu
,
I.
Bhattacharya
,
T.-T. D.
Tran
,
H.
Sun
, and
C. J.
Chang-Hasnain
,
ACS Photonics
4
,
1021
(
2017
).
19.
H.
Kim
,
A. C.
Farrell
,
P.
Senanayake
,
W.-J.
Lee
, and
D. L.
Huffaker
,
Nano Lett.
16
,
1833
(
2016
).
20.
H.
Kim
,
W.-J.
Lee
,
A. C.
Farrell
,
J. S. D.
Morales
,
P.
Senanayake
,
S. V.
Prikhodko
,
T. J.
Ochalski
, and
D. L.
Huffaker
,
Nano Lett.
17
,
3465
(
2017
).
21.
T.
Stettner
,
T.
Kostenbader
,
D.
Ruhstorfer
,
J.
Bissinger
,
H.
Riedl
,
M.
Kaniber
,
G.
Koblmüller
, and
J. J.
Finley
,
ACS Photonics
4
,
2537
(
2017
).
22.
M. K.
Kim
,
A. M.
Lakhani
, and
M. C.
Wu
,
Opt. Express
19
,
23504
(
2011
).
23.
M.-K.
Kim
,
Z.
Li
,
K.
Huang
,
R.
Going
,
M. C.
Wu
, and
H.
Choo
,
Opt. Express
21
,
25796
(
2013
).
24.
I.
Giuntoni
,
L.
Geelhaar
,
J.
Bruns
, and
H.
Riechert
,
Opt. Express
24
,
18417
(
2016
).
25.
A. V.
Maslov
and
C. Z.
Ning
,
Appl. Phys. Lett.
83
,
1237
(
2003
).
26.
B.
Mayer
,
L.
Janker
,
B.
Loitsch
,
J.
Treu
,
T.
Kostenbader
,
S.
Lichtmannecker
,
T.
Reichert
,
S.
Morkötter
,
M.
Kaniber
,
G.
Abstreiter
,
C.
Gies
,
G.
Koblmüller
, and
J. J.
Finley
,
Nano Lett.
16
,
152
(
2016
).
27.
F.
Lu
,
I.
Bhattacharya
,
H.
Sun
,
T.-T. D.
Tran
,
K. W.
Ng
,
G. N.
Malheiros-Silveira
, and
C.
Chang-Hasnain
,
Optica
4
,
717
(
2017
).
28.
G. K.
Svendsen
,
H.
Weman
, and
J.
Skaar
,
J. Appl. Phys.
109
,
103101
(
2011
).
29.
L.
Chen
and
E.
Towe
,
Appl. Phys. Lett.
87
,
103111
(
2005
).
30.
L.
Chen
and
E.
Towe
,
Appl. Phys. Lett.
89
,
053125
(
2006
).
31.
D. I.
Babić
,
Y.
Chung
,
N.
Dagli
, and
J. E.
Bowers
,
IEEE J. Quantum Electron.
29
,
1950
(
1993
).
32.
T.
Stettner
,
A.
Thurn
,
M.
Döblinger
,
M. O.
Hill
,
J.
Bissinger
,
P.
Schmiedeke
,
S.
Matich
,
T.
Kostenbader
,
D.
Ruhstorfer
,
H.
Riedl
,
M.
Kaniber
,
L. J.
Lauhon
,
J. J.
Finley
, and
G.
Koblmüller
,
Nano Lett.
18
,
6292
(
2018
).
33.
S.
Adachi
,
J. Appl. Phys.
66
,
6030
(
1989
).
34.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Elsevier
,
1985
).
35.
D.
Saxena
,
N.
Jiang
,
X.
Yuan
,
S.
Mokkapati
,
Y.
Guo
,
H. H.
Tan
, and
C.
Jagadish
,
Nano Lett.
16
,
5080
(
2016
).
36.
G.
Koblmüller
,
B.
Mayer
,
T.
Stettner
,
G.
Abstreiter
, and
J. J.
Finley
,
Semicond. Sci. Technol.
32
,
053001
(
2017
).
37.
K.
Tomioka
,
T.
Tanaka
,
S.
Hara
,
K.
Hiruma
, and
T.
Fukui
,
IEEE J. Sel. Top. Quantum Electron.
17
,
1112
(
2011
).
38.
G.
Koblmüller
and
G.
Abstreiter
,
Phys. Status Solidi Rapid Res. Lett.
8
,
11
(
2014
).
39.
M. J.
Humphrey
,
E.
Dale
,
A. T.
Rosenberger
, and
D. K.
Bandy
,
Opt. Commun.
271
,
124
(
2007
).

Supplementary Material

You do not currently have access to this content.