Magnetotransport measurements on electron bilayer systems under low frequency continuous microwave irradiation reveal an anomalous magnetoresistance behavior. At low total imbalanced carrier densities, pronounced features in the longitudinal and Hall resistance emerge that show a surprisingly strong sensitivity to frequency, microwave power, and density. We suggest its origin to be related to resonantly induced capacitance oscillations of the two-layer system.

1.
K. V.
Klitzing
,
G.
Dorda
, and
M.
Pepper
,
Phys. Rev. Lett.
45
,
494
497
(
1980
).
2.
M. A.
Zudov
,
R. R.
Du
,
J. A.
Simmons
, and
J. L.
Reno
,
Phys. Rev. B
64
,
201311
(
2001
).
3.
P. D.
Ye
,
L. W.
Engel
,
D. C.
Tsui
,
J. A.
Simmons
,
J. R.
Wendt
,
G. A.
Vawter
, and
J. L.
Reno
,
Appl. Phys. Lett.
79
,
2193
2195
(
2001
).
4.
R. G.
Mani
,
J. H.
Smet
,
K.
von Klitzing
,
V.
Narayanamurti
,
W. B.
Johnson
, and
V.
Umansky
,
Nature
420
,
646
(
2002
).
5.
M. A.
Zudov
,
R. R.
Du
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Evidence for a new dissipationless effect in 2D electronic transport
,”
Phys. Rev. Lett.
90
,
046807
(
2003
).
6.
I. A.
Dmitriev
,
A. D.
Mirlin
,
D. G.
Polyakov
, and
M. A.
Zudov
, “
Nonequilibrium phenomena in high Landau levels
,”
Rev. Mod. Phys.
84
,
1709
1763
(
2012
).
7.
Z. F.
Ezawa
,
Quantum Hall Effects: Recent Theoretical and Experimental Developments
, 3rd ed. (
World Scientific
,
2013
).
8.
N. C.
Mamani
,
G. M.
Gusev
,
T. E.
Lamas
,
A. K.
Bakarov
, and
O. E.
Raichev
, “
Resonance oscillations of magnetoresistance in double quantum wells
,”
Phys. Rev. B
77
,
205327
(
2008
).
9.
S.
Wiedmann
,
G. M.
Gusev
,
O. E.
Raichev
,
A. K.
Bakarov
, and
J. C.
Portal
,
Phys. Rev. Lett.
105
,
026804
(
2010
).
10.
J.
Iñarrea
,
Nanoscale Res. Lett.
8
,
259
(
2013
).
11.
S.
Luryi
,
Appl. Phys. Lett
52
,
501
503
(
1988
).
12.
S.
Dorozhkin
,
D.
Sychev
, and
A.
Kapustin
,
J. Appl. Phys.
116
,
203702
(
2014
).
13.
S.
Peters
,
L.
Tiemann
,
C.
Reichl
,
S.
Fält
,
W.
Dietsche
, and
W.
Wegscheider
,
Appl. Phys. Lett.
110
,
042106
(
2017
).
14.
A. G.
Akkala
,
S.
Steiger
,
J. M. D.
Sellier
,
S.
Lee
,
M.
Povolotskyi
,
T. C.
Kubis
,
H.-H.
Park
,
S.
Agarwal
,
G.
Klimeck
,
J.
Fonseca
,
A.
Tankasala
, and
C.-Y. C.
Kuang-Chung Wang
, see https://nanohub.org/resources/1dhetero for “1D Heterostructure Tool.”
15.
S.
Steiger
,
M.
Povolotskyi
,
H.
Park
,
T.
Kubis
, and
G.
Klimeck
, “
NEMO5: A parallel multiscale nanoelectronics modeling tool
,”
IEEE Trans. Nanotechnol.
10
(
6
),
1464
1474
(
2011
).
16.
See https://nanohub.org/groups/nemo5distribution for “NEMO5 Distribution and Support Group.”
17.
I. V.
Kukushkin
,
J. H.
Smet
,
S. A.
Mikhailov
,
D. V.
Kulakovskii
,
K.
von Klitzing
, and
W.
Wegscheider
,
Phys. Rev. Lett.
90
,
156801
(
2003
).
18.
V.
Popov
,
O.
Polischuk
, and
M.
Shur
,
J. Appl. Phys.
98
,
033510
(
2005
).
19.
V.
Popov
and
O.
Polischuk
,
Tech. Phys. Lett.
36
,
272
275
(
2010
).
20.
B. M.
Ashkinadze
and
V. I.
Yudson
, “
Hysteretic microwave cyclotronlike resonance in a laterally confined two-dimensional electron gas
,”
Phys. Rev. Lett.
83
,
812
815
(
1999
).
You do not currently have access to this content.