Silicon (Si) has been scaled below 10 nm in multigate and silicon-on-insulator (SOI) device technologies, but clearly Si thickness cannot be reduced indefinitely, as we will run out of atoms eventually. As thickness approaches 5 nm, surfaces and interfaces will significantly impact the electrical behavior of Si, and surface physics cannot be discounted. Below that, bulk material properties will be altered considerably in the few-monolayer limit. One of the most basic defining properties of a semiconductor is its conductivity. To improve conductivity, while inducing a channel by appropriate biasing, it is necessary to define an accurate impurity doping strategy to reduce parasitic resistance. In this paper, we investigated the changing electrical conductivity of SOI films as a function of the Si thickness, in the range of 3–66 nm. SOI films were ex situ doped using three different approaches: liquid/vapor phase monolayer doping of phosphorus using allyldiphenylphosphine, gas-phase doping of arsenic using arsine (AsH3), and room-temperature beam-line ion implantation of phosphorus. The circular transfer length method and micro-four-point probe measurements were used to determine the resistivity of the Si films, mitigating the contribution from contact resistance. The resistivity of the Si films was observed to increase with decreasing Si film thickness below 20 nm, with a dramatic increase observed for a Si thickness at 4.5 nm. This may drastically impact the number of parallel conduction paths (i.e., nanowires) required in gate-all-around devices. Density functional theory modeling indicates that the surface of the Si film with a thickness of 4.5 nm is energetically more favorable for the dopant atom compared to the core of the film.

1.
C. C.
Sun
,
R. R.
Liang
,
L. B.
Liu
,
J.
Wang
, and
J.
Xu
,
Appl. Phys. Lett.
107
(
13
),
132105
(
2015
).
2.
V.
Djara
,
L.
Czornomaz
,
V.
Deshpande
,
N.
Daix
,
E.
Uccelli
,
D.
Caimi
,
M.
Sousa
, and
J.
Fompeyrine
,
Solid State Electron.
115
,
103
(
2016
).
3.
H.
Liu
and
P. D. D.
Ye
,
IEEE Electron Device Lett.
33
(
4
),
546
(
2012
).
4.
M. J. H.
Van Dal
,
N.
Collaert
,
G.
Doornbos
,
G.
Vellianitis
,
G.
Curatola
,
B. J.
Pawlak
,
R.
Duffy
,
C.
Jonville
,
B.
Degroote
,
E.
Altamirano
,
E.
Kunnen
,
M.
Demand
,
S.
Beckx
,
T.
Vandeweyer
,
C.
Delvaux
,
F.
Leys
,
A.
Hikavyy
,
R.
Rooyackers
,
M.
Kaiser
,
R. G. R.
Weemaes
,
S.
Biesemans
,
M.
Jurczak
,
K.
Anil
,
L.
Witters
, and
R. J. P.
Lander
, in
Digest of Technical Papers—Symposium on VLSI Technology
(IEEE,
2007
), p.
110
.
5.
A.
Veloso
,
G.
Hellings
,
M. J.
Cho
,
E.
Simoen
,
K.
Devriendt
,
V.
Paraschiv
,
E.
Vecchio
,
Z.
Tao
,
J. J.
Versluijs
,
L.
Souriau
,
H.
Dekkers
,
S.
Brus
,
J.
Geypen
,
P.
Lagrain
,
H.
Bender
,
G.
Eneman
,
P.
Matagne
,
A.
De Keersgieter
,
W.
Fang
,
N.
Collaert
, and
A.
Thean
,
paper presented at the 2015 Symposium on VLSI Technology (VLSI Technology), 2015
.
6.
J. P.
Colinge
,
Solid State Electron.
48
(
6
),
897
(
2004
).
7.
H. K.
Lim
and
J. G.
Fossum
,
IEEE Trans. Electron Devices
30
(
10
),
1244
(
1983
).
8.
See http://www.itrs2.net/ for semiconductor technology trends and projections.
9.
M.
Diarra
,
Y. M.
Niquet
,
C.
Delerue
, and
G.
Allan
,
Phys. Rev. B
75
(
4
),
045301
(
2007
).
10.
M. T.
Bjork
,
H.
Schmid
,
J.
Knoch
,
H.
Riel
, and
W.
Riess
,
Nat. Nanotechnol.
4
(
2
),
103
(
2009
).
11.
T. L.
Chan
,
M. L.
Tiago
,
E.
Kaxiras
, and
J. R.
Chelikowsky
,
Nano Lett.
8
(
2
),
596
(
2008
).
12.
M. V.
Fernández-Serra
,
C.
Adessi
, and
X.
Blase
,
Phys. Rev. Lett.
96
(
16
),
166805
(
2006
).
13.
L.
Lin
,
Z.
Li
,
J.
Feng
, and
Z.
Zhang
,
Phys. Chem. Chem. Phys.
15
(
16
),
6063
(
2013
).
14.
R. W.
Hamm
and
M. E.
Hamm
,
Industrial Accelerators and Their Applications
(
World Scientific Publishing Co.
,
2012
), p.
1
.
15.
N.
Kennedy
,
R.
Duffy
,
L.
Eaton
,
D.
O'Connell
,
S.
Monaghan
,
S.
Garvey
,
J.
Connolly
,
C.
Hatem
,
J. D.
Holmes
, and
B.
Long
,
Beilstein J. Nanotechnol.
9
,
2106
(
2018
).
16.
R.
Duffy
,
A.
Ricchio
,
R.
Murphy
,
G.
Maxwell
,
R.
Murphy
,
G.
Piaszenski
,
N.
Petkov
,
A.
Hydes
,
D.
O'Connell
,
C.
Lyons
,
N.
Kennedy
,
B.
Sheehan
,
M.
Schmidt
,
F.
Crupi
,
J. D.
Holmes
,
P. K.
Hurley
,
J.
Connolly
,
C.
Hatem
, and
B.
Long
,
J. Appl. Phys.
123
(
12
),
125701
(
2018
).
17.
R.
Duffy
,
K.
Thomas
,
E.
Galluccio
,
G.
Mirabelli
,
M.
Sultan
,
N.
Kennedy
,
N.
Petkov
,
G.
Maxwell
,
A.
Hydes
,
D.
O'Connell
,
C.
Lyons
,
B.
Sheehan
,
M.
Schmidt
,
J. D.
Holmes
,
P. K.
Hurley
,
E.
Pelucchi
,
J.
Connolly
,
C.
Hatem
, and
B.
Long
,
J. Appl. Phys.
124
(
4
),
045703
(
2018
).
18.
J. H.
Klootwijk
and
C. E.
Timmering
, in
Merits and Limitations of Circular TLM Structures for Contact Resistance Determination for Novel III-V HBTs
(
IEEE International Conference on Microelectronic Test Structures
,
2004
), p.
247
.
19.
G. K.
Reeves
and
H. B.
Harrison
,
IEEE Electron Device Lett.
3
(
5
),
111
(
1982
).
20.
K. G.
Kalhauge
,
H. H.
Henrichsen
,
F.
Wang
,
O.
Hansen
, and
D. H.
Petersen
,
J. Micromech. Microeng.
28
(
9
),
095010
(
2018
).
21.
R.
Rymaszewski
,
J. Phys. E
2
(
2
),
170
(
1969
).
22.
S.
Thorsteinsson
,
F.
Wang
,
D. H.
Petersen
,
T. M.
Hansen
,
D.
Kjær
,
R.
Lin
,
J.-Y.
Kim
,
P. F.
Nielsen
, and
O.
Hansen
,
Rev. Sci. Instrum.
80
(
5
),
053902
(
2009
).
24.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
(
10
),
5048
(
1981
).
25.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B Condens. Matter Mater. Phys.
69
(
19
),
195113
(
2004
).
26.
D.
Sharma
,
L.
Ansari
,
B.
Feldman
,
M.
Iakovidis
,
J. C.
Greer
, and
G.
Fagas
,
J. Appl. Phys.
113
(
20
),
203708
(
2013
).
27.
L.
Ansari
,
B.
Feldman
,
G.
Fagas
,
C. M.
Lacambra
,
M. G.
Haverty
,
K. J.
Kuhn
,
S.
Shankar
, and
J. C.
Greer
,
IEEE Trans. Nanotechnol.
12
(
6
),
1075
(
2013
).
28.
K.
Uchida
,
H.
Watanabe
,
J.
Koga
,
A.
Kinoshita
, and
S.
Takagi
, in
Experimental Study on Carrier Transport Mechanism in Ultrathin-Body SOI MOSFETs
(IEEE,
2003
), p.
8
.
29.
R.
Granzner
,
V. M.
Polyakov
,
C.
Schippel
, and
F.
Schwierz
,
IEEE Trans. Electron Devices
61
(
11
),
3601
(
2014
).
30.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
(
22
),
226401
(
2009
).
31.
J. C.
Greer
,
A.
Blom
, and
L.
Ansari
,
J. Phys. Condens. Matter
30
(
41
),
414003
(
2018
).
You do not currently have access to this content.