In this paper, we demonstrate a new method to control the enhanced transmission due to Fabry–Perot resonances through an array of dielectric-loaded slots in a thick metallic screen. We obtain approximate analytical formulas for each polarization (TM and TE) using a mode-matching technique based on the assumption that the slots are small compared to a free-space wavelength and that the metallic screen is a perfect electric conductor as is appropriate for microwave frequency applications. We show that the bandwidth and locations of enhanced transmission can be controlled by the angle of incidence or by making the material filling the slots inhomogeneous. Computational results are given that demonstrate the influence of the angle of incidence on the enhanced transmission bandwidth. We show that the separation between enhanced transmission frequencies can be controlled by introducing a gap within the slot with a different dielectric constant. Also, we illustrate how the total transmission bandwidth can be increased by adjusting the angle of incidence and the gap size.

1.
A. H.
Haddab
and
E. F.
Kuester
, “
Extraordinary transmission through a single dielectric-loaded slot in a thick metallic shield
,”
IEEE Trans. Antennas Propag.
66
,
1846
1853
(
2018
).
2.
A.
Haddab
and
E. F.
Kuester
, “Extraordinary transmission of an electromagnetic wave through a dielectric-loaded slot in a metallic shield of finite thickness,” in National Radio Science Meeting, Boulder, CO, 4–7 January 2017, paper B6-7.
3.
A.
Haddab
and
E. F.
Kuester
, “Effect of higher-order modes on extraordinary transmission through a dielectric-loaded slot in a thick metallic shield,” in IEEE Antennas and Propagation and USNC-URSI Radio Science Meeting, San Diego, CA, 9–14 July 2017, paper 1599.
4.
F. L.
Neerhoff
and
G.
Mur
, “
Diffraction of a plane electromagnetic wave by a slit in a thick screen placed between two different media
,”
Appl. Sci. Res.
28
,
73
88
(
1973
).
5.
L. N.
Litvinenko
,
S. L.
Prosvirnin
, and
V. P.
Shestopalov
, “
Diffraction of a planar, H-polarized electromagnetic wave on a slit in a metallic shield of finite thickness
,”
Radio Eng. Electron. Phys.
22
(
3
),
35
43
(
1977
).
6.
D. T.
Auckland
and
R. F.
Harrington
, “
Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case
,”
IEEE Trans. Microw. Theory Tech.
26
,
499
505
(
1978
).
7.
R. F.
Harrington
and
D. T.
Auckland
, “
Electromagnetic transmission through narrow slots in thick conducting screens
,”
IEEE Trans. Antennas Propag.
28
,
616
622
(
1980
).
8.
T. J.
Park
,
S. H.
Kang
, and
H. J.
Eom
, “
TE scattering from a slit in a thick conducting screen
,”
IEEE Trans. Antennas Propag.
42
,
112
114
(
1994
).
9.
Y.
Takakura
, “
Optical resonance in a narrow slit in a thick metallic screen
,”
Phys. Rev. Lett.
86
,
5601
5603
(
2001
).
10.
H. J.
Eom
,
Wave Scattering Theory: A Series Approach Based on the Fourier Transformation
(
Springer-Verlag
,
Berlin
,
2001
).
11.
V. G.
Sologub
,
V. P.
Shestopalov
, and
G. G.
Polovnikov
, “
Diffraction of electromagnetic waves on metal gratings with narrow slits
,”
Sov. Phys. Tech. Phys.
12
,
476
485
(
1967
).
12.
Y. S.
Kim
,
H. J.
Eom
, and
J. W.
Lee
, “
Scattering from multiple slits in a thick conducting plane
,”
Radio Sci.
30
,
1341
1347
(
1995
).
13.
T. W.
Ebbesen
,
H. J.
Lezec
,
H. F.
Ghaemi
,
T.
Thio
, and
P. A.
Wolff
, “
Extraordinary optical transmission through sub-wavelength hole arrays
,”
Nature
391
,
667
669
(
1998
).
14.
D. C.
Skigin
,
H.
Loui
,
Z.
Popović
, and
E. F.
Kuester
, “
Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits
,”
Phys. Rev. E
76
,
016604
(
2007
).
15.
F.
Medina
,
F.
Mesa
, and
D. C.
Skigin
, “
Extraordinary transmission through arrays of slits: A circuit theory model
,”
IEEE Trans. Microw. Theory Tech.
58
,
105
115
(
2010
).
16.
V.
Delgado
and
R.
Marques
, “
Surface impedance model for extraordinary transmission in 1D metallic and dielectric screens
,”
Opt. Exp.
19
,
25290
25297
(
2011
).
17.
D. W.
Woo
,
S. J.
Muhn
, and
W. S.
Park
, “
Simple analytical model of propagation through thick periodic slot
,”
IEEE Trans. Antennas Propag.
60
,
5329
5335
(
2012
).
18.
D. T.
Auckland
and
R. F.
Harrington
, “
Electromagnetic transmission through cascaded rectangular regions in a thick conducting screen
,”
Arch. Elek. Übertragungstech.
34
,
19
26
(
1980
).
19.
D. T.
Auckland
and
R. F.
Harrington
, “
A nonmodal formulation for electromagnetic transmission through a filled slot of arbitrary cross section in a thick conducting screen
,”
IEEE Trans. Microw. Theory Tech.
28
,
548
555
(
1980
).
20.
J. M.
Jin
and
J. L.
Volakis
, “
New technique for characterising diffraction by inhomogeneously filled slot of arbitrary cross-section in thick conducting plane
,”
Electron. Lett.
25
,
1121
1123
(
1989
).
21.
S. D.
Gedney
and
R.
Mittra
, “
Electromagnetic transmission through inhomogeneously filled slots in a thick conducting plane—Arbitrary incidence
,”
IEEE Trans. Electromagn. Compat.
34
,
404
415
(
1992
).
22.
A.
Haddab
and
E. F.
Kuester
, “
Plane-wave transmission through an array of dielectric-loaded slots in a thick metallic screen: Normal incidence
,”
IEEE Trans. Antennas Propag.
(published online 2019).
23.
Z.
Wang
,
T.
Sang
,
L.
Wang
,
J.
Zhu
,
Y.
Wu
, and
L.
Chen
, “
Guided-mode resonance Brewster filters with multiple channels
,”
Appl. Phys. Lett.
88
,
251115
(
2006
).
24.
A.
Coves
,
S.
Marini
,
B.
Gimeno
,
D.
Sánchez
,
A.
Rodríguez
, and
V. E.
Boria
, “
Design of narrow-band dielectric frequency-selective surfaces for microwave applications
,”
IET Microw. Antennas Propag.
10
,
251
255
(
2016
).
25.
X.
Liu
,
S.
Chen
,
W.
Zang
, and
J.
Tian
, “
Triple-layer guided-mode resonance Brewster filter consisting of a homogenous layer and coupled gratings with equal refractive index
,”
Opt. Express
19
,
8233
8241
(
2011
).
26.
A.
Alù
,
G.
D’Aguanno
,
N.
Mattiucci
, and
M. J.
Bloemer
, “
Plasmonic Brewster angle: Broadband extraordinary transmission through optical gratings
,”
Phys. Rev. Lett.
106
,
123902
(
2011
).
27.
Negative-Refraction Metamaterials: Fundamental Principles and Applications, edited by G. V. Eleftheriades and K. G. Balmain (John Wiley and Sons, Hoboken, NJ, 2005).
28.
S.
Tretyakov
,
Analytical Modeling in Applied Electromagnetics
(
Artech House
,
Boston, MA
,
2003
).
29.
A.
Hatef
and
M.
Singh
, “
Decay of a quantum dot in two-dimensional metallic photonic crystals
,”
Opt. Commun.
284
,
2363
2369
(
2011
).
30.
A.
Haddab
and
E. F.
Kuester
, “Transmission through an inhomogeneous dielectric-loaded slot in an infinite metallic shield of finite thickness,” in USNC-URSI National Radio Science Meeting, Boulder, CO, 4–7 January 2018, paper B3-4.
31.
A.
Haddab
and
E. F.
Kuester
, “The effect of inhomogeneous dielectric loading on transmission through a slot in an infinite thick metallic shield,” preprint arXiv:1904.10326 (2019).
32.
ANSYS HFSS® Electromagnetics Suite 16.2.0.
33.
A. H.
Haddab
,
E. F.
Kuester
, and
C. L.
Holloway
, “Rectangular waveguide loaded with a dielectric slot in a thick metallic shield,” in USNC-URSI National Radio Science Meeting, Boulder, CO, 9–12 January 2019, paper B4-4.
You do not currently have access to this content.