The fabrication of nanostructures of vanadium dioxide (VO2)-based films with critical dimensions down to 100 nm and the characterization of their phase transformation properties are presented. Starting materials are VO2 and V0.99Mo0.01O2 films that are deposited by magnetron sputtering. For nanofabrication, two top-down processes are investigated, in which the substrate is nanomachined either before or after film deposition. Electrical resistance measurements on V0.99Mo0.01O2 bridge nanostructures exhibit a semiconductor–metal transition similar to reference films. A detailed analysis of phase transition temperatures does not reveal any significant width-dependence as it may be expected when approaching the grain size of 100 nm. The absolute electrical resistance in the semiconducting state scales inversely proportional to the width reflecting homogeneous material characteristics. Yet, the resistance change at the semiconductor–metal transition tends to increase for decreasing width indicating reduced carrier scattering as the absolute number of grain boundaries decreases.

1.
B. C.
Wu
,
H.
Wei
,
B.
Ning
, and
Y.
Xie
, “
New vanadium oxide nanostructures: Controlled synthesis and their smart electrical switching properties
,”
Adv. Mater.
22
,
1972
1976
(
2010
).
2.
M.
Marezio
, “
Structural aspects of the metal-insulator transitions in Cr-doped VO2
,”
Phys. Rev. B
5
,
2541
2551
(
1971
).
3.
J.
Cao
,
E.
Ertekin
,
V.
Srinivasan
,
W.
Fan
,
S.
Huang
,
H.
Zheng
,
J. W. L.
Yim
,
D. R.
Khanal
,
D. F.
Ogletree
,
J. C.
Grossman
, and
J.
Wu
, “
Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams
,”
Nat. Nanotechnol.
4
,
732
737
(
2009
).
4.
N.
Inomata
,
L.
Pan
,
M.
Toda
, and
T.
Ono
, “Microfabricated vanadium oxide resonant thermal sensor with a high temperature coefficient of resonant frequency,” in
2016 IEEE 29th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
(IEEE, 2016), pp. 1042–1045.
5.
R.
Cabrera
,
E.
Merced
, and
N.
Sepulveda
, “
Performance of electro-thermally driven VO2-based MEMS actuators
,”
J. Microelectromech. Syst.
23
,
243
251
(
2014
).
6.
T. J.
Hanlon
,
J. A.
Coath
, and
M. A.
Richardson
, “
Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method
,”
Thin Solid Films
436
,
269
272
(
2003
).
7.
A.
Lai
,
Z.
Du
,
C. L.
Gan
, and
C. A.
Schuh
, “
Shape memory and superelastic ceramics at small scales
,”
Science
341
,
1505
1508
(
2013
).
8.
B. S.
Guiton
,
Q.
Gu
,
A. L.
Prieto
,
M. S.
Gudiksen
, and
H.
Park
, “
Single-crystalline vanadium dioxide nanowires with rectangular cross sections
,”
J. Am. Chem. Soc.
127
,
498
499
(
2005
).
9.
A.
Tselev
,
E.
Strelcov
,
I. A.
Luk’yanchuk
,
J. D.
Budai
,
J. Z.
Tischler
,
I. N.
Ivanov
,
K.
Jones
,
R.
Proksch
,
S. V.
Kalinin
, and
A.
Kolmakov
, “
Interplay between ferroelastic and metal-insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets
,”
Nano Lett.
10
,
2003
2011
(
2010
).
10.
S.
Lee
,
K.
Hippalgaonkar
,
F.
Yang
,
J.
Hong
,
C.
Ko
,
J.
Suh
,
K.
Liu
,
K.
Wang
,
J. J.
Urban
,
X.
Zhang
,
C.
Dames
,
S. A.
Hartnoll
,
O.
Delaire
, and
J.
Wu
, “
Anomalously low electronic thermal conductivity in metallic vanadium dioxide
,”
Science
355
,
371
374
(
2017
).
11.
H.
Guo
,
M. I.
Khan
,
C.
Cheng
,
W.
Fan
,
C.
Dames
,
J.
Wu
, and
A. M.
Minor
, “
Vanadium dioxide nanowire-based micro thermometer for quantitative evaluation of electron beam heating
,”
Nat. Commun.
5
,
4986
(
2014
).
12.
K.
Liu
,
C.
Cheng
,
Z.
Cheng
,
K.
Wang
,
R.
Ramesh
, and
J.
Wu
, “
Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs
,”
Nano Lett.
12
,
6302
6308
(
2012
).
13.
W.
Xiao
,
Y. A. N.
Lu
,
L. I.
Ying
, and
C. A. O.
Yun-Zhen
, “
Sputtering deposition of VO2 film using plasma emission monitor as reactive gas flow rate feedback control
,”
J. Inorg. Mater.
30
,
1228
1232
(
2015
).
14.
C.
Lay
,
I.
Aseguinolaza
,
V.
Chernenko
, and
M.
Kohl
, “In-situ characterization of ferromagnetic shape memory alloy/silicon bimorph nanoactuators,” in
14th IEEE International Conference on Nanotechnology
(IEEE, 2014), pp. 192–195.
15.
F. J.
Morin
, “
Oxides which show a metal-to-insulator transition at the Neel temperature
,”
Phys. Rev. Lett.
29
,
1361
1362
(
1972
).
16.
J. B.
Goodenough
, “
The two components of the crystallographic transition in VO2
,”
J. Solid State Chem.
3
,
490
500
(
1971
).
17.
P.
Jin
,
K.
Yoshimura
, and
S.
Tanemura
, “
Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films
,”
J. Vac. Sci. Technol. A
15
,
1113
1117
(
1997
).
18.
L. A.
Ladd
and
W.
Paul
, “
Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature
,”
Solid State Commun.
7
,
425
428
(
1969
).
19.
Y.
Zhao
,
J. H.
Lee
,
Y.
Zhu
,
C.
Nazari
,
M.
Chen
,
A.
Wang
,
H.
Bernussi
,
M.
Holtz
, and
Z.
Fan
, “
Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates
,”
J. Appl. Phys.
111
,
053533
(
2012
).
20.
K.
Okimura
and
N.
Kubo
, “
Preparation of VO2 films with metal-insulator transition on sapphire and silicon substrates by inductively coupled plasma-assisted sputtering
,”
Jpn. J. Appl. Phys.
44
,
1150
1153
(
2005
).
21.
D.
Ruzmetov
,
K. T.
Zawilski
,
V.
Narayanamurti
, and
S.
Ramanathan
, “
Structure-functional property relationships in RF-sputtered vanadium dioxide thin films
,”
J. Appl. Phys.
102
,
113715
(
2007
).
22.
X.
Tan
,
T.
Yao
,
R.
Long
,
Z.
Sun
,
Y.
Feng
,
H.
Cheng
,
X.
Yuan
,
W.
Zhang
,
Q.
Liu
,
C.
Wu
,
Y.
Xie
, and
S.
Wei
, “
Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping
,”
Sci. Rep.
2
,
466
(
2012
).
23.
S.-J.
Liu
,
H.-W.
Fang
,
Y.-T.
Su
, and
J.-H.
Hsieh
, “
Metal–insulator transition characteristics of Mo- and Mn-doped VO2 films fabricated by magnetron cosputtering technique
,”
Jpn. J. Appl. Phys.
53
,
063201
(
2014
).
24.
R.
Lopez
,
T. E.
Haynes
,
L. A.
Boatner
,
L. C.
Feldman
, and
R. F.
Haglund
, “
Size effects in the structural phase transition of VO2 nanoparticles
,”
Phys. Rev. B
65
,
224113
(
2002
).
25.
J.
Du
,
Y.
Gao
,
H.
Luo
,
L.
Kang
,
Z.
Zhang
,
Z.
Chen
, and
C.
Cao
, “
Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition
,”
Solar Energy Mater. Solar Cells
95
,
469
475
(
2011
).
26.
S.
Zhou
,
Y.
Li
,
H.
Zhu
,
R.
Sun
,
Y.
Zhang
,
Y.
Huang
,
L.
Li
,
Y.
Shen
,
Q.
Zhen
,
G.
Tong
, and
B.
Fang
, “
Microstructures and thermochromic characteristics of low-cost vanadium-tungsten co-sputtered thin films
,”
Surf. Coatings Technol.
206
,
2922
2926
(
2012
).
27.
J.
Cao
,
Y.
Gu
,
W.
Fan
,
L.
Chen
,
D.
Ogletree
,
K.
Chen
,
N.
Tamura
,
M.
Kunz
,
C.
Barrett
,
J.
Seidel
, and
J.
Wu
, “
Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram
,”
Nano Lett.
10
,
2667
2673
(
2010
).
28.
J.
Kim
,
C.
Ko
,
A.
Frenzel
,
S.
Ramanathan
, and
J. E.
Hoffman
, “
Nanoscale imaging and control of resistance switching in VO2 at room temperature
,”
Appl. Phys. Lett.
96
,
213106
(
2010
).
29.
J. F.
De Natale
,
P. J.
Hood
, and
A. B.
Harker
, “
Formation and characterization of grain-oriented VO2 thin films
,”
J. Appl. Phys.
66
,
5844
5850
(
1989
).

Supplementary Material

You do not currently have access to this content.