Compounds crystallizing in the structure of NaZr2(PO4)3 (NZP) are considered as promising materials for solid state electrolytes in Li-ion batteries. Using density functional theory (DFT), a systematic computational screening of 18 NZP compounds, namely, LiX2(LO4)3 with X=Ti, V, Fe, Zr, Nb, Ru, Hf, Ta, Os, and L=P, Mn, is performed with respect to their activation energies for vacancy-mediated Li migration. It is shown how the different ionic radii of the cationic substitutions influence structural characteristics such as the octahedron volumes around Li ions on the initial-state and transition-state sites, which affect the activation energies (“composition–structure–property” relationships). The prevalent assumption that structural bottlenecks formed by triangularly arranged oxygen atoms at a certain location along the migration path determine the energy barriers for Li migration is not supported by the DFT results. Instead, the ionic neighborhood of the migrating ion in the initial and in the transition state needs to be taken into account to relate the structure to the activation energies. This conclusion applies to Na-containing NZP compounds as well.

1.
B.
Scrosati
and
J.
Garche
,
J. Power Sources
195
,
2419
(
2010
).
2.
S.
Kirklin
,
B.
Meredig
, and
C.
Wolverton
,
Adv. Energy Mater.
3
,
252
(
2013
).
3.
S.-G.
Ling
,
J.
Gao
,
R.-J.
Xiao
, and
L.-Q.
Chen
,
Chin. Phys. B
25
,
018208
(
2016
).
4.
G.
Hautier
,
A.
Jain
,
S. P.
Ong
,
B.
Kang
,
C.
Moore
,
R.
Doe
, and
G.
Ceder
,
Chem. Mater.
23
,
3495
(
2011
).
5.
R.
Xiao
,
H.
Li
, and
L.
Chen
,
Sci. Rep.
5
,
14227
(
2015
).
6.
C.
Masquelier
,
Nat. Mater.
10
,
649
(
2011
).
7.
K.
Takada
,
Acta Mater.
61
,
759
(
2013
).
8.
J.
Li
,
C.
Ma
,
M.
Chi
,
C.
Liang
, and
N. J.
Dudney
,
Adv. Energy Mater.
5
,
1401408
(
2015
).
9.
F.
Wu
and
G.
Yushin
,
Energy Environ. Sci.
10
,
435
(
2017
).
10.
S.
Goriparti
,
E.
Miele
,
F.
De Angelis
,
E.
Di Fabrizio
,
R.
Proietti Zaccaria
, and
C.
Capiglia
,
J. Power Sources
257
,
421
(
2014
).
11.
H. Y.-P.
Hong
,
Mater. Res. Bull.
11
,
173
(
1976
).
12.
N.
Anantharamulu
,
K.
Koteswara Rao
,
G.
Rambabu
,
B.
Vijaya Kumar
,
V.
Radha
, and
M.
Vithal
,
J. Mater. Sci.
46
,
2821
(
2011
).
13.
M.
Guin
and
F.
Tietz
,
J. Power Sources
273
,
1056
(
2015
).
14.
A.
Aatiq
,
M.
Ménétrier
,
L.
Croguennec
,
E.
Suard
, and
C.
Delmas
,
J. Mater. Chem.
12
,
2971
(
2002
).
15.
M. J.
Aragon
,
P.
Lavela
,
G. F.
Ortiz
, and
J. L.
Tirado
,
J. Electrochem. Soc.
162
,
A3077
(
2015
).
16.
C. W.
Mason
,
I.
Gocheva
,
H. E.
Hoster
, and
D. Y. W.
Yu
,
ECS Trans.
58
,
41
(
2014
).
17.
J.
Feng
,
B.
Yan
,
J.
Liu
,
M.
Lai
, and
L.
Li
,
Mater. Technol.
28
,
276
(
2013
).
18.
E. C.
Bucharsky
,
K. G.
Schell
,
A.
Hintennach
, and
M. J.
Hoffmann
,
Solid State Ionics
274
,
77
(
2015
).
19.
K.
Arbi
,
W.
Bucheli
,
R.
Jiménez
, and
J.
Sanz
,
J. Eur. Ceram. Soc.
35
,
1477
(
2015
).
20.
L. O.
Hagman
and
P.
Kierkegaard
,
Acta Chem. Scand.
22
,
1822
(
1968
).
21.
C.
Delmas
,
R.
Olazcuaga
,
G.
Le Flem
,
P.
Hagenmuller
,
F.
Cherkaoui
, and
R.
Brochu
,
Mater. Res. Bull.
16
,
285
(
1981
).
22.
H.
Aono
,
E.
Sugimoto
,
Y.
Sadaoka
,
N.
Imanaka
, and
G.-Y.
Adachi
,
J. Electrochem. Soc.
137
,
1023
(
1990
).
23.
V.
Pet’kov
and
A.
Orlova
,
Inorg. Mater.
39
,
1013
(
2003
).
24.
D.
Tran Qui
,
J. J.
Capponi
,
M.
Gondrand
,
M.
Saïb
, and
J. C.
Joubert
,
Solid State Ionics
3–4
,
219
(
1981
).
25.
J. M.
Winand
,
A.
Rulmont
, and
P.
Tarte
,
J. Mater. Sci.
25
,
4008
(
1990
).
26.
J.
Alamo
,
Solid State Ionics
63–65
,
547
(
1993
).
27.
S.
Kumar
and
P.
Balaya
,
Solid State Ionics
296
,
1
(
2016
).
28.
H.
Xu
,
S.
Wang
,
H.
Wilson
,
F.
Zhao
, and
A.
Manthiram
,
Chem. Mater.
29
,
7206
(
2017
).
29.
H.
Kohler
and
H.
Schulz
,
Solid State Ionics
9 & 10
,
795
(
1983
).
30.
H.
Kohler
and
H.
Schulz
,
Mater. Res. Bull.
20
,
1461
(
1985
).
31.
E. R.
Losilla
,
M. A. G.
Aranda
,
S.
Bruque
,
M. A.
París
,
J.
Sanz
, and
A. R.
West
,
Chem. Mater.
10
,
665
(
1998
).
32.
A.
Martínez-Juárez
,
C.
Pecharromán
,
J. E.
Iglesias
, and
J. M.
Rojo
,
J. Phys. Chem. B
102
,
372
(
1998
).
33.
B.
Lang
,
B.
Ziebarth
, and
C.
Elsässer
,
Chem. Mater.
27
,
5040
(
2015
).
34.
G.
Henkelman
,
B. P.
Uberuaga
, and
H. A.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
35.
I.
Pinus
,
A.
Khoroshilov
,
K.
Gavrichev
,
V.
Tarasov
, and
A.
Yaroslavtsev
,
Solid State Ionics
212
,
112
(
2012
).
36.
M.
Monchak
,
T.
Hupfer
,
A.
Senyshyn
,
H.
Boysen
,
D.
Chernyshov
,
T.
Hansen
,
K. G.
Schell
,
E. C.
Bucharsky
,
M. J.
Hoffmann
, and
H.
Ehrenberg
,
Inorg. Chem.
55
,
2941
(
2016
).
37.
W. T. A.
Harrison
and
M. L. F.
Phillips
,
Acta Crystallogr.
C57
,
2
(
2001
).
38.
I.
Bussereau
,
M. S.
Belkhiria
,
P.
Gravereau
,
A.
Boireau
,
J. L.
Soubeyroux
,
R.
Olazcuaga
, and
G.
Le Flem
,
Acta Crystallogr.
C48
,
1741
(
1992
).
39.
D.
Mutter
,
D. F.
Urban
, and
C.
Elsässer
,
MRS Adv.
2
,
483
(
2017
).
40.
I. D.
Brown
,
Acta Crystallogr.
B48
,
553
(
1992
).
41.
M. T.
Weller
and
S. J.
Skinner
,
Acta Crystallogr.
C55
,
154
(
1999
).
42.
S.
Laha
,
R.
Sharma
,
S. V.
Bhat
,
M. L. P.
Reddy
,
J.
Gopalakrishnan
, and
S.
Natarajan
,
Bull. Mater. Sci.
34
,
1257
(
2011
).
43.
Y.
Han
,
X.
Ye
,
H.
Zhu
,
Y.
Li
, and
X.
Kuang
,
J. Solid State Chem.
247
,
20
(
2017
).
44.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys. Condens. Matter
21
,
395502
(
2009
).
45.
D. F.
Shanno
,
Math. Comput.
24
,
647
(
1970
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
47.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
48.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
49.
K. F.
Garrity
,
J. B.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Comput. Mater. Sci.
81
,
446
(
2014
).
50.
A.
France-Lanord
and
J. C.
Grossman
,
Phys. Rev. Lett.
122
,
136001
(
2019
).
51.
A.
Marcolongo
and
N.
Marzari
,
Phys. Rev. Mater.
1
,
025402
(
2017
).
52.
C.
Masquelier
,
C.
Wurm
,
J.
Rodríguez-Carvajal
,
J.
Gaubicher
, and
L.
Nazar
,
Chem. Mater.
12
,
525
(
2000
).
53.
G.
Lucazeau
,
M.
Barj
,
J. L.
Soubeyroux
,
A. J.
Dianoux
, and
C.
Delmas
,
Solid State Ionics
18–19
,
959
(
1986
).
54.
M.
Catti
,
S.
Stramare
, and
R.
Ibberson
,
Solid State Ionics
123
,
173
(
1999
).
55.
J. J.
Shi
,
G. Q.
Yin
,
L. M.
Jing
,
J.
Guan
,
M. P.
Wu
,
Y. L.
Zhou
,
H. L.
Lou
, and
Z.
Wang
,
Int. J. Mod. Phys. B
28
,
1450176
(
2014
).
56.
X.
Lu
,
S.
Wang
,
R.
Xiao
,
S.
Shi
,
H.
Li
, and
L.
Chen
,
Nano Energy
41
,
626
(
2017
).
57.
P.
Padma Kumar
and
S.
Yashonath
,
J. Phys. Chem. B
106
,
7081
(
2002
).
58.
D.
Mazza
,
J. Solid State Chem.
156
,
154
(
2001
).
59.
R.
Rao
,
C.
Maohua
, and
S.
Adams
,
J. Solid State Electrochem.
16
,
3349
(
2012
).
60.
S.
Adams
and
R.
Rao
,
Phys. Status Solidi A
208
,
1746
(
2011
).
61.
D. A.
Woodcock
and
P.
Lightfoot
,
J. Mater. Chem.
9
,
2907
(
1999
).
62.
R. D.
Shannon
,
Acta Crystallogr.
A32
,
751
(
1976
).
63.
C.
Masquelier
,
A. K.
Padhi
,
K. S.
Nanjundaswamy
, and
J. B.
Goodenough
,
J. Solid State Chem.
135
,
228
(
1998
).
64.
S.
Patoux
,
G.
Rousse
,
J.-B.
Leriche
, and
C.
Masquelier
,
Chem. Mater.
15
,
2084
(
2003
).
65.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
You do not currently have access to this content.