In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was 1.85×1010W/Hz at Ib = 50 μA and 1.58×1010W/Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.

1.
P.
Martyniuk
,
J.
Antoszewski
,
M.
Martyniuk
,
L.
Faraone
, and
A.
Rogalski
, “
New concepts in infrared photodetector designs
,”
Appl. Phys. Rev.
1
,
041102
(
2014
).
2.
R. M.
Woodward
,
B. E.
Cole
,
V. P.
Wallace
,
R. J.
Pye
,
D. D.
Arnone
,
E. H.
Linfield
, and
M.
Pepper
, “
Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue
,”
Phys. Med. Biol.
47
,
3853
(
2002
).
3.
M.
Nagel
,
P. H.
Bolivar
,
M.
Brucherseifer
,
H.
Kurz
,
A.
Bosserhoff
, and
R.
Buttner
, “
Integrated THz technology for label-free genetic diagnostics
,”
Appl. Phys. Lett.
80
(
1
),
154
(
2002
).
4.
N.
Karpowicz
,
H.
Zhong
,
C.
Zhang
,
K. I.
Lin
,
J. S.
Hwang
,
J.
Xu
, and
X. C.
Zhang
, “
Compact continuous-wave subterahertz system for inspection applications
,”
Appl. Phys. Lett.
86
(
5
),
054105
(
2005
).
5.
K.
Yamamoto
,
M.
Yamaguchi
,
F.
Miyamaru
,
M.
Tani
,
M.
Hangyo
,
T.
Ikeda
,
A.
Matsushita
,
K.
Koide
,
M.
Tatsuno
, and
Y.
Minami
, “
Non-invasive inspection of c-4 explosive in mails by terahertz time-domain spectroscopy
,”
Jpn. J. Appl. Phys.
43
,
L414
(
2004
).
6.
K.
Kawase
,
Y.
Ogawa
,
Y.
Watanabe
, and
H.
Inoue
, “
Non-destructive terahertz imaging of illicit drugs using spectral fingerprints
,”
Opt. Express
11
(
20
),
2549
(
2003
).
7.
C.
Joerdens
and
M.
Koch
, “
Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy
,”
Opt. Eng.
47
(
3
),
037003
(
2008
).
8.
M.
Tonouchi
, “
Cutting-edge terahertz technology
,”
Nat. Photonics
1
,
97
(
2007
).
9.
P. H.
Siegel
, “
Terahertz technology
,”
IEEE Trans. Microw. Theory Tech.
50
,
910
(
2002
).
10.
B. S.
Williams
, “
Terahertz quantum-cascade lasers
,”
Nat. Photonics
1
,
517
(
2007
).
11.
F.
Schuster
,
D.
Coquillat
,
H.
Videlier
,
M.
Sakowicz
,
F.
Teppe
,
L.
Dussopt
,
B.
Giffard
,
T.
Skotnicki
, and
W.
Knap
, “
Broadband terahertz imaging with highly sensitive silicon CMOS detectors
,”
Opt. Express
19
,
7827
(
2011
).
12.
X.
Cai
,
A. B.
Sushkov
,
R. J.
Suess
,
M. M.
Jadidi
,
G. S.
Jenkins
,
L. O.
Nyakiti
,
R. L.
Myers-Ward
,
S.
Li
,
J.
Yan
,
D. K.
Gaskill
,
T. E.
Murphy
,
H. D.
Drew
, and
M. S.
Fuhrer
, “
Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene
,”
Nat. Nanotechnol.
9
,
814
(
2014
).
13.
L.
Liu
,
J. L.
Hesler
,
H.
Xu
,
A. W.
Lichtenberger
, and
R. M.
Weikle
, “
A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode
,”
IEEE Microw. Wirel. Compon. Lett.
20
,
504
(
2010
).
14.
G. C.
Trichopoulos
,
H. L.
Mosbacker
,
D.
Burdette
, and
K.
Sertel
, “
A broadband focal plane array camera for real-time THz imaging applications
,”
IEEE Trans. Antennas Propag.
61
,
1733
(
2013
).
15.
C. M.
Watts
,
D.
Shrekenhamer
,
J.
Montoya
,
G.
Lipworth
,
J.
Hunt
,
T.
Sleasman
,
S.
Krishna
,
D. R.
Smith
, and
W. J.
Padilla
, “
Terahertz compressive imaging with metamaterial spatial light modulators
,”
Nat. Photonics
8
,
605
(
2014
).
16.
L.
Liang
 et al, “
Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials
,”
Adv. Opt. Mater.
3
(
10
),
1311
(
2015
).
17.
D. B.
But
,
C.
Drexler
,
M. V.
Sakhno
,
N.
Dyakonova
,
O.
Drachenko
,
F. F.
Sizov
,
A.
Gutin
,
S. D.
Ganichev
, and
W.
Knap
, “
Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities
,”
J. Appl. Phys.
115
,
164514
(
2014
).
18.
X.
Yang
,
A.
Vorobiev
,
A.
Generalov
,
M. A.
Andersson
, and
J.
Stake
, “
A flexible graphene terahertz detector
,”
Appl. Phys. Lett.
111
,
021102
(
2017
).
19.
X.
Huang
,
T.
Leng
,
M.
Zhu
,
X.
Zhang
,
J.
Chen
,
K.
Chang
,
M.
Aqeeli
,
A. K.
Geim
,
K. S.
Novoselov
, and
Z.
Hu
, “
Highly flexible and conductive printed graphene for wireless wearable communications applications
,”
Sci. Rep.
5
,
18298
(
2014
).
20.
J.
Noh
,
M.
Jung
,
Y.
Jung
,
C.
Yeom
,
M.
Pyo
, and
G.
Cho
, “
Key issues with printed flexible thin film transistors and their application in disposable RF sensors
,”
Proc. IEEE
103
,
554
(
2015
).
21.
A.
Rogalski
and
F.
Sizov
, “
Terahertz detectors and focal plane arrays
,”
Opto Electron. Rev.
19
,
346
(
2011
).
22.
M. V. S.
Ramakrishna
,
G.
Karunasiri
,
P.
Neuzil
,
U.
Sridhar
, and
W. J.
Zeng
, “
Highly sensitive infrared temperature sensor using self-heating compensated microbolometers
,”
Sens. Actuators A
79
,
122
(
2000
).
23.
F.
Niklau
,
C.
Vieider
, and
H.
Jakobsen
, “
MEMS/MOEMS technologies and applications III
,”
Proc. SPIE
6836
,
68360D
(
2007
).
24.
S.
Chen
,
H.
Ma
,
S.
Xiang
, and
X.
Yi
, “
Fabrication and performance of microbolometer arrays based on nanostructured vanadium oxide thin films
,”
Smart Mater. Struct.
16
,
696
(
2007
).
25.
A.
Tiwari
,
H.
Satoh
,
M.
Aoki
,
M.
Takeda
,
N.
Hiromoto
, and
H.
Inokawa
, “
Analysis of microbolometer characteristics for antenna-coupled terahertz detectors
,”
Asian J. Chem.
25
,
S358
(
2013
).
26.
N.
Hiromoto
,
A.
Tiwari
,
M.
Aoki
,
H.
Satoh
,
M.
Takeda
, and
H.
Inokawa
, “
Room-temperature THz antenna-coupled microbolometer with a Joule-heating resistor at the center of a half-wave antenna
,” in
39th International Conference Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
(
IEEE
,
2014
), p. R3/A-27.6.
27.
M.
Aoki
,
M.
Takeda
, and
N.
Hiromoto
, in
Proceedings of the International Conference on Global Research and Education (Inter-Academia)
,
Budapest, Hungary
, 27–30 August 2012 (Inter Academia, 2012).
28.
A.
Tanaka
,
S.
Matsumoto
,
N.
Tsukamoto
,
S.
Itoh
,
K.
Chiba
,
T.
Endoh
,
A.
Nakazato
,
K.
Okuyama
,
Y.
Kumazawa
,
M.
Hijikawa
,
H.
Gotoh
,
T.
Tanaka
, and
N.
Teranishi
, “
Infrared focal plane array incorporating silicon IC process compatible bolometer
,”
IEEE Trans. Electron Devices
43
,
1844
(
1996
).
29.
Y. L.
Cheng
,
B. J.
Wei
,
F. H.
Shih
, and
Y. L.
Wang
, “
Stability and reliability of Ti/TiN as a thin film resistor
,”
ECS J. Solid State Sci. Technol.
2
,
Q12
(
2013
).
30.
A.
Tiwari
,
H.
Satoh
,
M.
Aoki
,
M.
Takeda
,
N.
Hiromoto
, and
H.
Inokawa
, “
Fabrication and analytical modeling of integrated heater and thermistor for antenna-coupled bolometers
,”
Sens. Actuators A
222
,
160
(
2015
).
31.
A.
Tiwari
,
H.
Satoh
,
M.
Aoki
,
M.
Takeda
,
N.
Hiromoto
, and
H.
Inokawa
, “
THz antenna-coupled microbolometer with 0.1-μm-wide titanium thermistor
,”
Int. J. ChemTech Res.
7
,
1019
(
2015
).
32.
A.
Banerjee
,
H.
Satoh
,
A.
Tiwari
,
C.
Apriono
,
E. T.
Rahardjo
,
N.
Hiromoto
, and
H.
Inokawa
, “
Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna-coupled terahertz microbolometer
,”
Jpn. J. Appl. Phys.
56
,
04CC07
(
2017
).
33.
A.
Banerjee
,
H.
Satoh
,
D.
Elamaran
,
Y.
Sharma
,
N.
Hiromoto
, and
H.
Inokawa
, “
Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer
,”
Jpn. J. Appl. Phys.
57
,
04FC09
(
2018
).
34.
A.
Banerjee
,
H.
Satoh
,
Y.
Sharma
,
N.
Hiromoto
, and
H.
Inokawa
, “
Characterization of platinum and titanium thermistors for terahertz antenna-coupled bolometer applications
,”
Sens. Actuators A
273
,
49
57
(
2018
).
35.
J.
Lewis
, “Far-infrared and sub-millimeter microbolometer detectors,” Ph.D. dissertation (University of Texas at Austin, 1994), see http://www.weewave.mer.utexas.edu/MED_files/MED_research/microbolometers/microblmtr_anlys/bolo_respnsvty.html.
36.
R. S.
Saxena
,
R. K.
Bhan
,
P. S.
Rana
,
A. K.
Vishwakarma
,
A.
Aggarwal
,
K.
Khurana
, and
S.
Gupta
, “
Study of performance degradation in titanium microbolometer IR detectors due to elevated heating
,”
Infrared Phys. Technol.
54
(
4
),
343
(
2011
).
37.
S.
Zhang
,
Y.
Yang
,
S. M.
Sadeghipour
, and
M.
Asheghi
, “
Thermal characterization of the 144 nm GMR layer using microfabricated suspended structures
,” in
Proceedings of ASME Summer Heat Transfer Conference
,
Las Vegas, Nevada
,
21–23 July 2003
(
ASME
,
2003
).
38.
S.
Leclercq
, see http://www.iram.fr/∼leclercq/Reports/About_NEP_photon_noise.pdf for “Discussion About Noise Equivalent Power and Its Use for Photon Noise Calculation.”
39.
P. L.
Richards
, “
Bolometers for infrared and millimeter waves
,”
J. Appl. Phys.
76
, 1 (
1994
).
40.
V.
Mackowiak
,
J.
Peupelmann
,
Y.
Ma
, and
A.
Gorges
, see https://www.thorlabs.co.jp/images/TabImages/Noise_Equivalent_Power_White_Paper.pdf for “NEP—Noise Equivalent Power.”
41.
N.
Nemoto
,
N.
Kanda
,
R.
Imai
,
K.
Konishi
,
M.
Miyoshi
,
S.
Kurashina
,
T.
Sasaki
,
N.
Oda
, and
M.
Kuwata-Gonokami
, “
High-sensitivity and broadband, real-time terahertz camera incorporating a microbolometer array with resonant cavity structure
,”
IEEE Trans. Terahertz Sci. Technol.
6
,
175
(
2016
).
42.
J.
Oden
,
J.
Meilhan
,
J.
Lalanne-Dera
,
J. F.
Roux
,
F.
Garet
,
J. L.
Coutaz
, and
F.
Simoens
, “
Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature
,”
Opt. Express
21
,
4817
(
2013
).
43.
P.
Hillger
,
J.
Grzyb
,
R.
Jain
, and
U. R.
Pfeiffer
, “
Terahertz imaging and sensing applications with silicon-based technologies
,”
IEEE Trans. Terahertz Sci. Technol.
9
,
1
(
2019
).
44.
C.
Dietlein
,
A.
Luukanen
,
F.
Meyer
,
Z.
Popovic
, and
E.
Grossman
, “
Phenomenology of passive broadband terahertz images
,” in
Proceedings of the 4th ESA Workshop on Millimetre-Wave Technology and Applications
(
VTT
,
Helsinki
,
2006
), pp.
405
410
.
45.
V.
Barnat
,
D.
Nagakura
,
P. I.
Wang
, and
T. M.
Lu
, “
Real time resistivity measurements during sputter deposition of ultrathin copper films
,”
J. Appl. Phys.
91
,
1667
(
2002
).
46.
G.
Schindler
,
G.
Steinlesberger
,
M.
Traving
, and
M.
Engelhardt
, “
Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller
,”
J. Appl. Phys.
97
,
023706
(
2005
).
47.
Q.
Huang
,
C. M.
Lilley
,
M.
Bode
, and
R.
Divan
, “
Surface and size effects on the electrical properties of Cu nanowires
,”
J. Appl. Phys.
104
,
023709
(
2008
).
48.
Y.
Kitaoka
,
T.
Tono
,
S.
Yoshimoto
,
T.
Hirahara
,
S.
Hasegawa
, and
T.
Ohba
, “
Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements
,”
Appl. Phys. Lett.
95
,
052110
(
2009
).
49.
Y.
Hanaoka
,
K.
Hinode
,
K.
Takeda
, and
D.
Kodama
, “
Increase in electrical resistivity of copper and aluminum fine lines
,”
Mater. Trans.
43
(
7
),
1621
(
2002
).
50.
L. L.
Melo
,
A. R.
Vaz
,
M. C.
Salvadori
, and
M.
Cattani
, “
Grain sizes and surface roughness in platinum and gold thin films
,”
J. Metastable Nanocrystalline Mater.
623
,
20
(
2004
).
51.
M. E.
Day
,
M.
Delfino
,
J. A.
Fair
, and
W.
Tsai
, “
Correlation of electrical resistivity and grain size in sputtered titanium films
,”
Thin Solid Films
254
(
1
),
285
(
1995
).
52.
H.
Iizuka
,
T.
Watanabe
,
K.
Sakakibara
, and
N.
Kikuma
, “
Stub-loaded folded dipole antenna for digital terrestrial TV reception
,”
IEEE Antennas Wirel. Propag. Lett.
5
,
260
261
(
2006
).
53.
C.
Chen
,
X.
Yi
,
J.
Zhang
, and
X.
Zhao
, “
Linear uncooled microbolometer array based on VOx thin films
,”
Infrared Phys. Technol.
42
(
2
),
87
90
(
2001
).
54.
H.
Wang
,
X.
Yi
,
G.
Huang
,
J.
Xiao
,
X.
Li
, and
S.
Chen
, “
IR microbolometer with self-supporting structure operating at room temperature
,”
Infrared Phys. Technol.
45
(
1
),
53
57
(
2004
).
55.
C.
Chen
,
X.
Yi
,
X.
Zhao
, and
B.
Xiong
, “
Characterizations of VO2-based uncooled microbolometer linear array
,”
Sens. Actuators A
90
(
3
),
212
214
(
2001
).
56.
H.-K.
Lee
,
J.-B.
Yoon
,
E.
Yoon
,
S.-B.
Ju
,
Y.-J.
Yong
,
W.
Lee
, and
S.-G.
Kim
, “
A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures
,”
IEEE Trans. Electron Devices
46
(
7
),
1489
1491
(
1999
).
57.
Bjorn F.
Andresen
and
Gabor F.
Fulop
,
Proc. SPIE
,
5406
,
521
(
2004
).
58.
R.
Sahai Saxena
,
R. K.
Bhan
,
P. S.
Rana
,
A.-K.
Vishwakarma
,
A.
Aggarwal
,
K.
Khurana
, and
S.
Gupta
, “
Study of performance degradation in titanium microbolometer IR detectors due to elevated heating
,”
Infrared Phys. Technol.
54
(
4
),
343
352
(
2011
).
You do not currently have access to this content.