The process of electric field enhancement and molecular energy transfer near core-shell nanoparticles is compared using multipole spectral expansion based closed form expressions. It is a general notion that localized surface plasmon modes of plasmonic structures greatly enhance the molecular energy transfer between a donor-acceptor pair and the electric field intensity. Most of such studies are conducted for donor-acceptor pairs placed far away so that the bare interaction energy is very small due to its r−6 character. Relative to this tiny bare interaction energy, surface plasmon induced interaction energy may be very large, for example, in the core-shell nanoparticle, which is a hybrid plasmonic structure of a sphere and a cavity. However, when molecules are positioned very close to each other and, therefore, the Coulumbic interaction between them is very strong, the enhancement factor is found to remain quite low. Moreover, the integrated analysis and comparison of electric field enhancement and molecular energy transfer near core-shell nanoparticles has not been done. Since core-shell nanoparticles exhibit rich plasmonic features in their optical spectra, they can be used for spectral fine tuning and have found applications in cancer diagnostics. Importantly, both processes, namely, electric field enhancement and molecular energy transfer, are treated using closed form expressions derived using multipole spectral expansion. Higher order plasmonic modes are shown to play a crucial role. The present work can be directly used as a formula, e.g., for designing surface plasmon based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

1.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
, “
Single molecule detection using surface-enhanced Raman scattering (SERS)
,”
Phys. Rev. Lett.
78
,
1667
(
1997
).
2.
L.
Jiang
,
T.
Yin
,
Z.
Dong
,
H.
Hu
,
M.
Liao
,
D.
Allioux
,
S. J.
Tan
,
X. M.
Goh
,
X.
Li
,
J. K. W.
Yang
, and
Z.
Shen
, “
Probing vertical and horizontal plasmonic resonant states in the photoluminescence of gold nanodisks
,”
ACS Photonics
2
,
1217
(
2015
).
3.
J.
Butet
,
J.
Duboisset
,
G.
Bachelier
,
I.
Russier-Antoine
,
E.
Benichou
,
C.
Jonin
, and
P. F.
Brevet
, “
Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium
,”
Nano Lett.
10
,
1717
(
2010
).
4.
R. A.
Farrer
,
F. L.
Butterfield
,
V. W.
Chen
, and
J. T.
Fourkas
, “
Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles
,”
Nano Lett.
5
,
1139
(
2005
).
5.
Y.
Liu
,
R.
Cheng
,
L.
Liao
,
H.
Zhou
,
J.
Bai
,
G.
Liu
,
L.
Liu
,
Y.
Huang
, and
X.
Duan
, “
Plasmon resonance enhanced multicolour photodetection by graphene
,”
Nat. Commun.
2
,
579
(
2011
).
6.
H.
Chalabi
,
D.
Schoen
, and
M. L.
Brongersma
, “
Hot-electron photodetection with a plasmonic nanostripe antenna
,”
Nano Lett.
14
,
1374
(
2014
).
7.
M. S.
Shishodia
,
B. D.
Fainberg
, and
A.
Nitzan
, “
Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures
,”
Proc. SPIE
8096
,
80961G
(
2011
).
8.
M.
Lessard-Viger
,
M.
Rioux
,
L.
Rainville
, and
D.
Boudreau
, “
FRET enhancement in multilayer core-shell nanoparticles
,”
Nano Lett.
9
,
3066
(
2009
).
9.
J.
Zhang
,
Y.
Fu
, and
J. R.
Lakowicz
, “
Enhanced Förster resonance energy transfer (FRET) on single metal particle
,”
J. Phys. Chem. C
11
,
50
(
2007
).
10.
N. J.
Halas
,
S.
Lal
,
W.-S.
Chang
,
S.
Link
, and
P.
Nordlander
, “
Plasmons in strongly coupled metallic nanostructures
,”
Chem. Rev.
111
,
3913
(
2011
).
11.
M.
Durach
,
A.
Rusina
,
V. I.
Klimov
, and
M. I.
Stockman
, “
Nanoplasmonic renormalization and enhancement of Coulomb interactions
,”
New J. Phys.
10
,
105011
(
2008
).
12.
G.
Qi Li
,
M. S.
Shishodia
,
B. D.
Fainberg
,
B.
Apter
,
M.
Oren
,
A.
Nitzan
, and
M. A.
Ratner
, “
Compensation of Coulomb blocking and energy transfer in the current voltage characteristic of molecular conduction junctions
,”
Nano Lett.
12
,
2228
(
2012
).
13.
M. S.
Shishodia
and
S.
Juneja
, “
Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle
,”
J. Appl. Phys.
119
,
203104
(
2016
).
14.
K.
Tanabe
, “
Field enhancement around metal nanoparticles and nanoshells: A systematic investigation
,”
J. Phys. Chem. C
112
,
15721
(
2008
).
15.
J.
Krajczewski
,
K.
Kolataj
, and
A.
Kudelski
, “
Plasmonic nanoparticles in chemical analysis
,”
RSC Adv.
7
,
17559
(
2017
).
16.
A.
Bouhelier
,
R.
Bachelot
,
J. S.
Im
,
G. P.
Weiderrecht
,
G.
Lerondel
,
S.
Kostchees
, and
P.
Royer
, “
Electromagnetic interactions in plasmonic nanoparticle arrays
,”
J. Phys. Chem. B
109
,
3195
(
2005
).
17.
D.
Gao
,
R.
Shi
,
Y.
Huang
, and
L.
Gao
, “
Fano enhanced pulling and pushing optical force on active plasmonic nanoparticles
,”
Phys. Rev. A
96
,
043826
(
2017
).
18.
A.
Demchuk
,
T.
Bolesta
,
O.
Kushnir
, and
I.
Kolych
, “
The computational studies of plasmon interaction
,”
Nanoscale Res. Lett.
12
,
273
(
2017
).
19.
K.
Nakayama
,
K.
Tanabe
, and
H. A.
Atwater
, “
Plasmonic nanoparticle enhanced light absorption in GaAs solar cells
,”
Appl. Phys. Lett.
93
,
121904
(
2008
).
20.
L. J.
Sherry
,
S. H.
Chang
,
G. C.
Schatz
, and
R. P.
Van Duyane
, “
Localized surface plasmon resonance spectroscopy of single silver nanocubes
,”
Nano Lett.
5
,
2034
(
2005
).
21.
P.
Hanarp
,
M.
Kall
, and
D. S.
Sutherland
, “
Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography
,”
J. Phys. Chem. B
107
,
5768
(
2003
).
22.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer
,
New York
,
2007
).
23.
W.
Raja
,
A.
Bozzola
,
P.
Zilio
,
E.
Miele
,
S.
Panaro
,
H.
Wang
,
A.
Toma
,
A.
Alabastri
,
F. D.
Angelis
, and
R. P.
Zacaria
, “
Broadband absorption enhancement in plasmonic nanoshells based ultrathin microcrystalline–Si solar cells
,”
Sci. Rep. B
6
,
24539
(
2016
).
24.
L. J.
Pegg
and
R. A.
Hatton
, “
Nanoscale geometric electric field enhancement in organic photovoltaics
,”
ACS Nano
6
,
4722
(
2012
).
25.
M. D.
Varcheie
,
C.
Guclu
,
R.
Ragan
,
O.
Boyraz
, and
F.
Capolino
, “
Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide
,”
Opt. Express
24
,
28337
(
2016
).
26.
Z.
Yong
,
C.
Gong
,
Y.
Dong
,
S.
Zhang
, and
S.
Ha
, “
Broadband localized electric field enhancement produced by a single element plasmonic nanoantenna
,”
RSC Adv.
7
,
2074
(
2017
).
27.
J. W.
Liaw
, “
Local-field enhancement and quantum yield of metallic dimer
,”
Jpn. J. Appl. Phys.
46
,
5373
(
2007
).
28.
J. B.
Lassiter
,
J.
Aizpurua
,
L. I.
Hernandez
,
D. W.
Brandl
,
I.
Romero
,
S.
Lal
,
J. H.
Hafner
,
P.
Nordlander
, and
N. J.
Halas
, “
Close encounters between two nanoshells
,”
Nano Lett.
8
,
1212
(
2008
).
29.
R.
Fuchs
, “
Theory of the optical properties of ionic crystal cubes
,”
Phys. Rev. B
11
,
1732
(
1975
).
30.
D. J.
Bergman
, “
Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum
,”
Phys. Rev. B
19
,
2359
(
1979
).
31.
G. W.
Milton
, “
Bounds on the complex dielectric constant of a composite mater
,”
Appl. Phys. Lett.
37
,
300
(
1980
).
32.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of noble metals
,”
Phys. Rev. B
6
,
4370
(
1972
).
You do not currently have access to this content.