To determine the band alignment at the GaSb1-xBix/GaSb interface, a set of GaSb1-xBix/GaSb quantum wells (QWs) of various widths (7, 11, and 15 nm) and contents (Bi ≤ 12%) were grown by molecular beam epitaxy and investigated by photoreflectance (PR) spectroscopy. In PR spectra, the optical transitions related to both the ground and the excited states in the QW were clearly observed. It is a direct experimental evidence that the GaSb1-xBix/GaSb QW is a type-I QW with a deep quantum confinement in both the conduction and valence bands. From the comparison of PR data with calculations of energies of QW transitions performed for the varying valence band offset (VBO), the best agreement between experimental data and theoretical calculations has been found for the VBO ∼50 ± 5%. A very similar VBO was obtained from ab initio calculations. These calculations show that the incorporation of Bi atoms into a GaSb host modifies both the conduction and valence band: the conduction-band position changes linearly at a rate of ∼15–16 meV per % Bi and the valence band position changes at a rate of ∼15–16 meV per % Bi. The calculated shifts of valence and conduction bands give the variation of VBO between GaSb1-xBix and GaSb in the range of ∼48%–52%, which is in good agreement with conclusions derived from PR measurements. In addition, it has been found that the electron effective mass reduces linearly with the increase in Bi concentration (x): meffGaSbBi=meffGaSb0.2x, where meffGaSb is the electron effective mass of GaSb. Moreover, a strong photoluminescence (PL) was observed and a negligible Stokes shift (less than a few meV) between the PL peak and the fundamental transition in the PR spectrum was detected for all QWs at low temperatures. It means that the investigated QWs are very homogeneous, and the carrier localization for this alloy is very weak in contrast to other dilute bismides.

1.
J.
Faist
,
F.
Capasso
,
D. L.
Sivco
,
C.
Sirtori
,
A. L.
Hutchinson
, and
A. Y.
Cho
, “
Quantum cascade laser
,”
Science
264
,
553
(
1994
).
2.
N.
Bandyopadhyay
,
S.
Slivken
,
Y.
Bai
, and
M.
Razeghi
, “
High power, continuous wave, room temperature operation of λ ∼ 3.4 lm and λ ∼ 3.55 lm InP-based quantum cascade lasers
,”
Appl. Phys. Lett.
100
,
212104
(
2012
) and references therein.
3.
R. Q.
Yang
, “
Infrared laser based on intersubband transitions in quantum wells
,”
Superlattices Microstruct.
17
,
77
(
1995
).
4.
R.
Weih
,
M.
Kamp
, and
S.
Hofling
, “
Interband cascade lasers with room temperature threshold current densities below 100 A/cm2
,”
Appl. Phys. Lett.
102
,
231123
(
2013
).
5.
I.
Vurgaftman
,
W. W.
Bewley
,
C. L.
Canedy
,
C. S.
Kim
,
M.
Kim
,
C. D.
Merritt
,
J.
Abell
, and
J. R.
Meyer
, “
Interband cascade lasers with low threshold powers and high output powers
,”
IEEE J. Sel. Top. Quantum Electron.
19
,
1200210
(
2013
) and references therein.
6.
E.
Tournié
and
A. N.
Baranov
, “
Mid-infrared semiconductor lasers: A review
,”
Semicond. Semimetals
86
,
183
(
2012
).
7.
K.
Vizbaras
and
M. C.
Amann
, “
Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers
,”
Semicond. Sci. Technol.
27
,
032001
(
2012
).
8.
J. A.
Gupta
,
A.
Bezinger
,
P. J.
Barrios
,
J.
Lapointe
,
D.
Poitras
, and
P.
Waldron
, “
High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally coupled index-grating distributed feedback laser diode at 3.23 μm
,”
Electron. Lett.
48
,
396
(
2012
).
9.
G.
Belenky
,
L.
Shterengas
,
M. V.
Kisin
, and
T.
Hosoda
, “
Gallium antimonide (GaSb)-based type-I quantum well diode lasers recent development and prospects
,” in
Semiconductor Lasers Fundamentals and Applications
, edited by
A.
Baranov
and
E.
Tournie
(
Woodhead Publishing Limited
,
Cambridge
,
UK
,
2013
), Chap. 11.
10.
M.
Gladysiewicz
,
R.
Kudrawiec
, and
M. S.
Wartak
, “
Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range
,”
J. Appl. Phys.
119
,
075701
(
2016
).
11.
O.
Delorme
,
L.
Cerutti
,
E.
Luna
,
G.
Narcy
,
A.
Trampert
,
E.
Tournié
, and
J.-B.
Rodriguez
, “
GaSbBi/GaSb quantum well laser diodes
,”
Appl. Phys. Lett.
110
,
222106
(
2017
).
12.
M. P.
Polak
,
P.
Scharoch
,
R.
Kudrawiec
,
J.
Kopaczek
,
M. J.
Winiarski
,
W. M.
Linhart
,
M. K.
Rajpalke
,
K. M.
Yu
,
T. S.
Jones
,
M. J.
Ashwin
, and
T. D.
Veal
, “
Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime
,”
J. Phys. D Appl. Phys.
47
,
355107
(
2014
).
13.
M.
Polak
,
P.
Scharoch
, and
R.
Kudrawiec
, “
First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: Chemical trends versus experimental data
,”
Semicond. Sci. Technol.
30
,
094001
(
2015
).
14.
R. B.
Lewis
,
M. M.
Shirazi
, and
T.
Tiedje
, “
Growth of high Bi concentration GaAs1-xBix by molecular beam epitaxy
,”
Appl. Phys. Lett.
101
,
082112
(
2012
).
15.
P.
Ludewig
,
L.
Nattermann
,
W.
Stolz
, and
K.
Volz
, “
MOVPE growth mechanisms of dilute bismide III/V alloys
,”
Semicond. Sci. Technol.
30
,
094017
(
2015
).
16.
H.
Fitouri
,
Y.
Essouda
,
I.
Zaied
,
A.
Rebey
, and
B.
El Jani
, “
Photoreflectance and photoluminescence study of localization effects in GaAsBi alloys
,”
Optic. Mat.
42
,
67
(
2015
).
17.
E.
Luna
,
M.
Wu
,
M.
Hanke
,
J.
Puustinen
,
M.
Guina
, and
A.
Trampert
, “
Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-xBix/GaAs quantum wells
,”
Nanotechnology
27
,
325603
(
2016
).
18.
J.
Kopaczek
,
W. M.
Linhart
,
M.
Baranowski
,
R. D.
Richards
,
F.
Bastiman
,
J. P. R.
David
, and
R.
Kudrawiec
, “
Optical properties of GaAsBi/GaAs quantum wells: Photoreflectance, photoluminescence and time-resolved photoluminescence study
,”
Semicond. Sci. Technol.
30
,
094005
(
2015
).
19.
P. K.
Patil
,
F.
Ishikawa
, and
S.
Shimomura
, “
Bismuth flux dependence of GaAsBi/GaAs MQWs grown by molecular beam epitaxy using two-substrate-temperature technique
,”
Superlattices Microstruct.
106
,
50
(
2017
).
20.
F.
Dybała
,
J.
Kopaczek
,
M.
Gladysiewicz
,
E.-M.
Pavelescu
,
C.
Romanitan
,
O.
Ligor
,
A.
Arnoult
,
C.
Fontaine
, and
R.
Kudrawiec
, “
Electromodulation spectroscopy of heavy-hole, light-hole, and spin-orbit transitions in GaAsBi layers at hydrostatic pressure
,”
Appl. Phys. Lett.
111
,
192104
(
2017
).
21.
V.
Pačebutas
,
R.
Butkutė
,
B.
Čechavičius
,
S.
Stanionytė
,
E.
Pozingytė
,
M.
Skapas
,
A.
Selskis
,
A.
Geižutis
, and
A.
Krotkus
, “
Bismides: 2D structures and quantum dots
,”
J. Phys. D Appl. Phys.
50
,
364002
(
2017
).
22.
I. P.
Marko
and
S. J.
Sweeney
, “
Progress toward III–V bismide alloys for near- and midinfrared laser diodes
,”
IEEE J. Selected Topic Quant. Electron.
23
,
1501512
(
2017
).
23.
L.
Wang
,
L.
Zhang
,
L.
Yue
,
D.
Liang
,
X.
Chen
,
Y.
Li
,
P.
Lu
,
J.
Shao
, and
S.
Wang
, “
Novel dilute bismide, epitaxy, physical properties and device application
,”
Crystals
7
,
63
(
2017
).
24.
L.
Gelczuk
,
J.
Kopaczek
,
T. B. O.
Rockett
,
R. D.
Richards
, and
R.
Kudrawiec
, “
Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties
,”
Sci. Rep.
7
,
2824
(
2017
).
25.
K.
Alberi
,
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
O. D.
Dubon
,
S. P.
Watkins
,
C. X.
Wang
,
X.
Liu
,
Y.-J.
Cho
, and
J.
Furdyna
, “
Valence-band anticrossing in mismatched III-V semiconductor alloys
,”
Phys. Rev. B
75
,
045203
(
2007
).
26.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
, “
Band anticrossing in GaInNAs alloys
,”
Phys. Rev. Lett.
82
,
1221
(
1999
).
27.
M.
Welna
,
R.
Kudrawiec
,
Y.
Nabetani
, and
W.
Walukiewicz
, “
Band anticrossing in ZnOSe highly mismatched alloy
,”
Appl. Phys. Express
7
,
071202
(
2014
).
28.
R.
Kudrawiec
,
A. V.
Luce
,
M.
Gladysiewicz
,
M.
Ting
,
Y. J.
Kuang
,
C. W.
Tu
,
O. D.
Dubon
,
K. M.
Yu
, and
W.
Walukiewicz
, “
Electronic band structure of GaNxPyAs1−x−y highly mismatched alloys: Suitability for intermediate-band solar cells
,”
Phys. Rev. Appl.
1
,
034007
(
2014
).
29.
S. K.
Das
,
T. D.
Das
,
S.
Dhar
,
M.
de la Mare
, and
A.
Krier
, “
Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy
,”
Infrared Phys. Technol.
55
,
156
(
2012
).
30.
M. K.
Rajpalke
,
W. M.
Linhart
,
M.
Birkett
,
K. M.
Yu
,
D. O.
Scanlon
,
J.
Buckeridge
,
T. S.
Jones
,
M. J.
Ashwin
, and
T. D.
Veal
, “
Growth and properties of GaSbBi alloys
,”
Appl. Phys. Lett.
103
,
142106
(
2013
).
31.
M. K.
Rajpalke
,
W. M.
Linhart
,
M.
Birkett
,
K. M.
Yu
,
J.
Alaria
,
J.
Kopaczek
,
R.
Kudrawiec
,
T. S.
Jones
,
M. J.
Ashwin
, and
T. D.
Veal
, “
High Bi content GaSbBi alloys
,”
J. Appl. Phys.
116
,
043511
(
2014
).
32.
J.
Kopaczek
,
R.
Kudrawiec
,
W. M.
Linhart
,
M. K.
Rajpalke
,
K. M.
Yu
,
T. S.
Jones
,
J. J.
Ashwin
,
J.
Misiewicz
, and
T. D.
Veal
, “
Temperature dependence of the band gap of GaSb1-xBix alloys with 0 < x ≤ 0.042 determined by photoreflectance
,”
Appl. Phys. Lett.
103
,
261907
(
2013
).
33.
J.
Kopaczek
,
R.
Kudrawiec
,
W. M.
Linhart
,
M. K.
Rajpalke
,
T. S.
Jones
,
M. J.
Ashwin
, and
T. D.
Veal
, “
Low- and high-energy photoluminescence from GaSb1-xBix with 0< x ≤ 0.042
,”
Appl. Phys. Express
7
,
111202
(
2014
).
34.
N.
Segercrantz
,
J.
Slotte
,
I.
Makkonen
,
F.
Tuomisto
,
I. C.
Sandall
,
M. J.
Ashwin
, and
T. D.
Veal
, “
Hole density and acceptor-type defects in MBE-grown GaSb1−xBix
,”
J. Phys. D Appl. Phys.
50
,
295102
(
2017
).
35.
O.
Delorme
,
L.
Cerutti
,
E.
Tournié
, and
J.-B.
Rodriguez
, “
Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys
,”
J. Cryst. Growth
477
,
144
(
2017
).
36.
W. M.
Linhart
,
M.
Gladysiewicz
,
J.
Kopaczek
,
M. K.
Rajpalke
,
M. J.
Ashwin
,
T. D.
Veal
, and
R.
Kudrawiec
, “
Indium-incorporation enhancement of photoluminescence properties of Ga(In)SbBi alloys
,”
J. Phys. D Appl. Phys.
50
,
375102
(
2017
).
37.
Y.
Song
,
S.
Wang
,
I. S.
Roy
,
P.
Shi
, and
A.
Hallen
, “
Growth of GaSb1-xBix by molecular beam epitaxy
,”
J. Vac. Sci. Technol. B
30
,
02B114
(
2012
).
38.
X. R.
Chen
,
Y. X.
Song
,
L. Q.
Zhu
,
Z.
Qi
,
L.
Zhu
,
F. X.
Zha
,
S. L.
Guo
,
S. M.
Wang
, and
J.
Shao
, “
Bismuth effects on electronic levels in GaSb(Bi)/AlGaSb quantum wells probed by infrared photoreflectance
,”
Chin. Phys. Lett.
32
,
067301
(
2015
).
39.
L.
Yue
,
X. R.
Chen
,
Y. C.
Zhang
,
J.
Kopaczek
,
J.
Shao
,
M.
Gladysiewicz
,
R.
Kudrawiec
,
X.
Ou
, and
S. M.
Wang
, “
Structural and optical properties of GaSbBi/GaSb quantum wells
,”
Opt. Mat. Express
8
,
893
900
(
2018
).
40.
T. J. C.
Hosea
,
D.
Lancefield
, and
N. S.
Garawal
, “
Detailed analysis of room-temperature photoreflectance of strained InxGa1-xAs/AlyGa1-yAs undoped single quantum wells
,”
J. Appl. Phys.
79
,
4338
(
1996
).
41.
Y. C.
Wang
,
S. L.
Tyan
, and
Y. D.
Juang
, “
Photoreflectance and photoluminescence spectroscopy of the lattice-matched InGaAs/InAlAs single quantum well
,”
J. Appl. Phys.
92
,
920
(
2002
).
42.
R.
Kudrawiec
,
G.
Sek
,
K.
Ryczko
,
J.
Misiewicz
, and
J. C.
Harmand
, “
Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb–GaInAs/GaAs bilayer quantum wells
,”
Appl. Phys. Lett.
84
,
3453
(
2004
).
43.
M.
Ferhat
and
A.
Zaoui
, “
Structural and electronic properties of III-V bismuth compounds
,”
Phys. Rev. B
73
,
115107
(
2006
).
44.
E.
Luna
,
O.
Delorme
,
L.
Cerutti
,
E.
Tournié
,
J.-B.
Rodriguez
, and
A.
Trampert
, “
Microstructure and interface analysis of emerging Ga(Sb,Bi) epilayers and Ga(Sb,Bi)/GaSb quantum wells for optoelectronic applications
,”
Appl. Phys. Lett.
112
,
151905
(2018).
45.
R.
Kudrawiec
and
J.
Misiewicz
, “
Photoreflectance and contactless electroreflectance measurements of semiconductor structures by using bright and dark configurations
,”
Rev. Sci. Instrum.
80
,
096103
(
2009
).
46.
G. L.
Bir
and
G. E.
Pikus
,
Symmetry and Strain-Induced Effects in Semiconductors
(
Wiley
,
New York
,
1976
).
47.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
, “
Band parameters for III-V compound semiconductors and their alloys
,”
J. Appl. Phys.
89
,
5815
(
2001
).
48.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
49.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
,
WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(
Karlheinz Schwarz, Technische Universität Wien
,
Austria
,
2001
), ISBN: 3-9501031-1-2.
50.
A.
van de Walle
,
P.
Tiwary
,
M.
de Jong
,
D. L.
Olmsted
,
M.
Asta
,
A.
Dick
,
D.
Shin
,
Y.
Wang
,
L.-Q.
Chen
, and
Z.-K.
Liu
, “
Efficient stochastic generation of special quasirandom structures
,”
Calphad
42
,
13
18
(
2013
).
51.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
52.
Z.
Wu
and
R. E.
Cohen
, “
More accurate generalized gradient approximation for solids
,”
Phys. Rev. B
73
,
235116
(
2006
).
53.
F.
Tran
and
P.
Blaha
, “
Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
,”
Phys. Rev. Lett.
102
,
226401
(
2009
).
54.
J. A.
Camargo-Martínez
and
R.
Baquero
, “
Performance of the modified Becke-Johnson potential for semiconductors
,”
Phys. Rev. B
86
,
195106
(
2012
).
55.
D.
Koller
,
F.
Tran
, and
P.
Blaha
, “
Improving the modified Becke-Johnson exchange potential
,”
Phys. Rev. B
85
,
155109
(
2012
).
56.
R.
Kudrawiec
,
M.
Syperek
,
P.
Poloczek
,
J.
Misiewicz
,
R. H.
Mari
,
M.
Shafi
,
M.
Henini
,
Y.
Galvão Gobato
,
S. V.
Novikov
,
J.
Ibáñez
,
M.
Schmidbauer
, and
S. I.
Molina
, “
Carrier localization in GaBiAs probed by photomodulated transmittance and photoluminescence
,”
J. Appl. Phys.
106
,
023518
(
2009
).
57.
M. K.
Shakfa
,
D.
Kalincev
,
X.
Lu
,
S. R.
Johnson
,
D. A.
Beaton
,
T.
Tiedje
,
A.
Chernikov
,
S.
Chatterjee
, and
M.
Koch
, “
Quantitative study of localization effects and recombination dynamics in GaAsBi/GaAs single quantum wells
,”
J. Appl. Phys.
114
,
164306
(
2013
).
58.
R.
Kudrawiec
,
M.
Latkowska
,
M.
Baranowski
,
J.
Misiewicz
,
L. H.
Li
, and
J. C.
Harmand
, “
Photoreflectance, photoluminescence, and microphotoluminescence study of optical transitions between delocalized and localized states in GaN0.02As0.98, Ga0.95In0.05N0.02As0.98, and GaN0.02As0.90Sb0.08 layers
,”
Phys. Rev. B
88
,
125201
(
2013
).
59.
R.
Kudrawiec
,
M.
Latkowska
,
M.
Welna
,
J.
Misiewicz
,
M.
Shafi
,
R. H.
Mari
,
M.
Henini
, and
W.
Walukiewicz
, “
Correlations between the band structure, activation energies of electron traps, and photoluminescence in n-type GaNAs layers
,”
Appl. Phys. Lett.
101
,
082109
(
2012
).
60.
D. E.
Aspnes
, “
Third-derivative modulation spectroscopy with low-field electroreflectance
,”
Surf. Sci.
37
,
418
(
1973
).
You do not currently have access to this content.