The E centers (dopant-vacancy pairs) play a significant role in dopant deactivation in semiconductors. In order to gain insight into dopant-defect interactions during epitaxial growth of in situ phosphorus doped Ge, positron annihilation spectroscopy, which is sensitive to open-volume defects, was performed on Ge layers grown by chemical vapor deposition with different concentrations of phosphorus (1×10181×1020cm3). Experimental results supported by first-principles calculations based on the two component density-functional theory gave evidence for the existence of mono-vacancies decorated by several phosphorus atoms as the dominant defect type in the epitaxial Ge. The concentration of vacancies increases with the amount of P-doping. The number of P atoms around the vacancy also increases, depending on the P concentration. The evolution of Pn–V clusters in Ge contributes significantly to the dopant deactivation.

1.
D. P.
Brunco
,
B.
DeJaeger
,
G.
Eneman
,
J.
Mitard
,
G.
Hellings
,
A.
Satta
,
V.
Terzieva
,
L.
Souriau
,
F. E.
Leys
,
G.
Pourtois
,
M.
Houssa
,
G.
Winderickx
,
E.
Vrancken
,
S.
Sioncke
,
K.
Opsomer
,
G.
Nicholas
,
M.
Caymax
,
A.
Stesmans
,
J. v.
Steenbergen
,
P.
Mertens
,
M.
Meuris
, and
M. M.
Heyns
,
J. Electrochem. Soc.
155
(
7
),
H552
(
2008
).
2.
G.
He
and
H. A.
Atwater
,
Phys. Rev. Lett.
79
,
1937
(
1997
).
3.
R.
Loo
,
B.
Vincent
,
F.
Gencarelli
,
C.
Merckling
,
A.
Kumar
,
G.
Eneman
,
L.
Witters
,
W.
Vandervorst
,
M.
Caymax
,
M. M.
Heyns
, and
A.
Thean
,
ECS J. Solid State Sci. Technol.
2
(
1
),
N35
(
2013
).
4.
R. W.
Olesinski
,
N.
Kanani
, and
G. J.
Abbaschian
,
Bull. Alloy Phase Diagrams
6
,
262
(
1985
).
5.
Y.
Shimura
,
S. A.
Srinivasan
,
D. v.
Thourhout
,
R. v.
Deun
,
M.
Pantouvaki
,
J. V.
Campenhout
, and
R.
Loo
,
Thin Solid Films
602
,
56
(
2016
).
6.
G.
Mattoni
,
W. M.
Klesse
,
G.
Capellini
,
M. Y.
Simmons
, and
G.
Scappucci
,
ACS Nano
7
,
11310
(
2013
).
7.
S. H.
Huang
,
F. L.
Lu
,
W. L.
Huang
,
C. H.
Huang
, and
C. W.
Liu
,
IEEE Electron Device Lett.
36
,
1114
(
2015
).
8.
R.
Milazzo
,
G.
Impellizzeri
,
D.
Piccinotti
,
D.
De Salvador
,
A.
Portavoce
,
A.
La Magna
,
G.
Fortunato
,
D.
Mangelinck
,
V.
Privitera
,
A.
Carnera
, and
E.
Napolitani
,
Appl. Phys. Lett.
110
,
011905
(
2017
).
9.
S.
Prucnal
,
F.
Liu
,
M.
Voelskow
,
L.
Vines
,
L.
Rebohle
,
D.
Lang
,
Y.
Berencén
,
S.
Andric
,
R.
Boettger
,
M.
Helm
,
S.
Zhou
, and
W.
Skorupa
,
Sci. Rep.
6
,
27643
(
2016
).
10.
S.
Brotzmann
and
H.
Bracht
,
J. Appl. Phys.
103
,
033508
(
2008
).
11.
A.
Chroneos
,
R. W.
Grimes
,
B. P.
Uberuaga
,
S.
Brotzmann
, and
H.
Bracht
,
Appl. Phys. Lett.
91
,
192106
(
2007
).
12.
A.
Chroneos
,
H.
Bracht
,
R. W.
Grimes
, and
B. P.
Uberuaga
,
Appl. Phys. Lett.
92
,
172103
(
2008
).
13.
C.
Janke
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
Phys. Rev. B
77
,
195210
(
2008
).
14.
H. A.
Tahini
,
A.
Chroneos
,
R. W.
Grimes
,
U.
Schwingenschlogl
, and
H.
Bracht
,
J. Phys. Chem. Chem. Phys.
15
,
367
(
2013
).
15.
J.
Vanhellemont
,
P.
Śpiewak
, and
K.
Sueoka
,
J. Appl. Phys.
101
,
036103
(
2007
).
16.
J.
Kujala
,
T.
Südkamp
,
J.
Slotte
,
I.
Makkonen
,
F.
Tuomisto
, and
H.
Bracht
,
J. Phys. Condens. Matter
28
,
335801
(
2016
), see http://stacks.iop.org/0953-8984/28/i=33/a=335801.
17.
T.
Kalliovaara
,
J.
Slotte
,
I.
Makkonen
,
J.
Kujala
,
F.
Tuomisto
,
R.
Milazzo
,
G.
Impellizzeri
,
G.
Fortunato
, and
E.
Napolitani
,
Appl. Phys. Lett.
109
,
182107
(
2016
).
18.
R.
Krause-Rehberg
and
H. S.
Leipner
,
Positron Annihilation in Semiconductors
(
Springer-Verlag
,
Berlin
,
1999
).
19.
J. R.
MacDonald
,
K.
Lynn
,
R.
Boie
, and
M.
Robbins
,
Nucl. Instrum. Methods
153
,
189
(
1978
).
20.
F.
Tuomisto
and
I.
Makkonen
,
Rev. Mod. Phys.
85
,
1583
(
2013
).
21.
P. J.
Schultz
and
K. G.
Lynn
,
Rev. Mod. Phys.
60
,
701
(
1988
).
22.
M. J.
Puska
and
R. M.
Nieminen
,
Rev. Mod. Phys.
66
,
841
(
1994
).
23.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
24.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
25.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
26.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
27.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
28.
E.
Boroński
and
R. M.
Nieminen
,
Phys. Rev. B
34
,
3820
(
1986
).
29.
M.
Alatalo
,
B.
Barbiellini
,
M.
Hakala
,
H.
Kauppinen
,
T.
Korhonen
,
M. J.
Puska
,
K.
Saarinen
,
P.
Hautojärvi
, and
R. M.
Nieminen
,
Phys. Rev. B
54
,
2397
(
1996
).
30.
I.
Makkonen
,
M.
Hakala
, and
M. J.
Puska
,
J. Phys. Chem. Solids
66
,
1128
(
2005
).
31.
I.
Makkonen
,
M.
Hakala
, and
M. J.
Puska
,
Phys. Rev. B
73
,
035103
(
2006
).
32.
S.
Valkealahti
and
R. M.
Nieminen
,
Appl. Phys. A
32
,
95
(
1983
).
33.
G. C.
Aers
,
J. Appl. Phys.
76
,
1622
(
1994
).
34.
C.
Corbel
,
M.
Stucky
, and
P.
Moser
,
Ann. Chim.
10
(
8
),
733
(
1985
).
35.
E.
Soininen
,
J.
Mäkinen
,
D.
Beyer
, and
P.
Hautojärvi
,
Phys. Rev. B
46
,
13104
(
1992
).
36.
A.
van Veen
,
H.
Schut
,
J. d.
Vries
,
R. A.
Hakvoort
, and
M. R.
Ijpma
,
AIP Conf. Proc.
218
,
171
(
1991
).
37.
S.
Eichler
,
J.
Gebauer
,
F.
Börner
,
A.
Polity
,
R.
Krause-Rehberg
,
E.
Wendler
,
B.
Weber
,
W.
Wesch
, and
H.
Börner
,
Phys. Rev. B
56
,
1393
(
1997
).
38.
J.
Slotte
,
S.
Kilpeläinen
,
F.
Tuomisto
,
J.
Räisänen
, and
A. N.
Larsen
,
Phys. Rev. B
83
,
235212
(
2011
).
39.
A.
Chroneos
,
R. W.
Grimes
,
H.
Bracht
, and
B. P.
Uberuaga
,
J. Appl. Phys.
104
,
113724
(
2008
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).

Supplementary Material

You do not currently have access to this content.