Impedance spectroscopy is a powerful and nondestructive tool for studying charge carrier dynamics in quantum dot light-emitting diodes (QLEDs). We report here that QLEDs exhibit unique capacitance behavior that strongly depends on the ligand chemistry of the quantum dots (QDs). At low frequencies and under bipolar injection, the capacitance of the QLEDs becomes negative before it returns to positive values at even lower frequencies. This behavior is fundamentally different from that observed in organic light-emitting diodes and is attributed to the accumulation of charge carriers within the ligand shells during operation. The capacitive response depends on both the conductivity and the length of the QD ligands and can be used as a diagnostic tool for understanding the luminescent recombination efficiency of a QLED. We find that short and conductive ligands result in positive device capacitances only and this correlates with enhanced device efficiency.

1.
V. C.
Bender
,
T. B.
Marchesan
, and
J. M.
Alonso
,
IEEE Ind. Electron. Mag.
9
,
6
(
2015
).
2.
T.
Tsujimura
,
OLED Display Fundamentals and Applications
(
John Wiley & Sons
,
2017
).
3.
L.
Ding
,
S.-C.
Dong
,
Z.-Q.
Jiang
,
H.
Chen
, and
L.-S.
Liao
,
Adv. Funct. Mater.
25
,
645
(
2015
).
4.
S.
Zhang
,
L.
Yao
,
Q.
Peng
,
W.
Li
,
Y.
Pan
,
R.
Xiao
,
Y.
Gao
,
C.
Gu
,
Z.
Wang
,
P.
Lu
et al.
Adv. Funct. Mater.
25
,
1755
(
2015
).
5.
B.-Q.
Liu
,
L.
Wang
,
D.-Y.
Gao
,
J.-H.
Zou
,
H.-L.
Ning
,
J.-B.
Peng
, and
Y.
Cao
,
Light Sci. Appl.
5
,
e16137
(
2016
).
6.
B.
Liu
,
H.
Nie
,
X.
Zhou
,
S.
Hu
,
D.
Luo
,
D.
Gao
,
J.
Zou
,
M.
Xu
,
L.
Wang
,
Z.
Zhao
et al.
Adv. Funct. Mater.
26
,
776
(
2016
).
7.
D. J.
Gaspar
and
E.
Polikarpov
,
OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes
(
CRC Press
,
2015
).
8.
P. O.
Anikeeva
,
J. E.
Halpert
,
M. G.
Bawendi
, and
V.
Bulovic
,
Nano Lett.
9
,
2532
(
2009
).
9.
Y.
Shirasaki
,
G. J.
Supran
,
M. G.
Bawendi
, and
V.
Bulović
,
Nat. Photonics
7
,
13
(
2013
).
10.
H.
Shen
,
W.
Cao
,
N. T.
Shewmon
,
C.
Yang
,
L. S.
Li
, and
J.
Xue
,
Nano Lett.
15
,
1211
(
2015
).
11.
J.
Kwak
,
J.
Lim
,
M.
Park
,
S.
Lee
,
K.
Char
, and
C.
Lee
,
Nano Lett.
15
,
3793
(
2015
). pMID: 25961530,
12.
K.-H.
Lee
,
C.-Y.
Han
,
H.-D.
Kang
,
H.
Ko
,
C.
Lee
,
J.
Lee
,
N.
Myoung
,
S.-Y.
Yim
, and
H.
Yang
,
ACS Nano
9
,
10941
(
2015
).
13.
L.
Sun
,
J. J.
Choi
,
D.
Stachnik
,
A. C.
Bartnik
,
B.-R.
Hyun
,
G. G.
Malliaras
,
T.
Hanrath
, and
F. W.
Wise
,
Nat. Nanotechnol.
7
,
369
(
2012
).
14.
V.
Colvin
,
M.
Schlamp
, and
A. A.
Nature
,
Nature
370
,
354
357
(
1994
).
15.
J.
Li
,
Z.
Liang
,
Q.
Su
,
H.
Jin
,
K.
Wang
,
G.
Xu
, and
X.
Xu
,
ACS Appl. Mater. Interfaces
10
,
3865
3873
(
2018
).
16.
K.-H.
Lee
,
J.-H.
Lee
,
W.-S.
Song
,
H.
Ko
,
C.
Lee
,
J.-H.
Lee
, and
H.
Yang
,
ACS Nano
7
,
7295
(
2013
).
17.
S.
Nowy
,
W.
Ren
,
J.
Wagner
,
J. A.
Weber
, and
W.
Brütting
, in Organic Light Emitting Materials and Devices XIII (International Society for Optics and Photonics, 2009), Vol. 7415, p. 74150G.
18.
T.
Okachi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Thin Solid Films
517
,
1331
(
2008
).
19.
T.
Okachi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Jpn. J. Appl. Phys.
47
,
8965
(
2008
).
20.
P.
Chulkin
,
O.
Vybornyi
,
M.
Lapkowski
,
P.
Skabara
, and
P.
Data
,
J. Mater. Chem. C
6
,
1008
(
2018
).
21.
S.
Nowy
,
W.
Ren
,
A.
Elschner
,
W.
Lövenich
, and
W.
Brütting
,
J. Appl. Phys.
107
,
054501
(
2010
).
22.
M.
Ershov
,
H.
Liu
,
L.
Li
,
M.
Buchanan
,
Z.
Wasilewski
, and
A. K.
Jonscher
,
IEEE Trans. Electron Devices
45
,
2196
(
1998
).
23.
A.
Perera
,
W.
Shen
,
M.
Ershov
,
H.
Liu
,
M.
Buchanan
, and
W.
Schaff
,
Appl. Phys. Lett.
74
,
3167
(
1999
).
24.
X.
Wu
,
E.
Yang
, and
H.
Evans
,
J. Appl. Phys.
68
,
2845
(
1990
).
25.
G.
Parravicini
,
A.
Stella
,
M.
Ungureanu
, and
R.
Kofman
,
Appl. Phys. Lett.
85
,
302
(
2004
).
26.
J.
Bisquert
,
G.
Garcia-Belmonte
,
Á
Pitarch
, and
H. J.
Bolink
,
Chem. Phys. Lett.
422
,
184
(
2006
).
27.
E.
Ehrenfreund
,
C.
Lungenschmied
,
G.
Dennler
,
H.
Neugebauer
, and
N.
Sariciftci
,
Appl. Phys. Lett.
91
,
012112
(
2007
).
28.
L.
Pingree
,
B.
Scott
,
M.
Russell
,
T.
Marks
, and
M.
Hersam
,
Appl. Phys. Lett.
86
,
073509
(
2005
).
29.
M.
Beale
and
P.
Mackay
,
Philos. Mag. B
65
,
47
(
1992
).
30.
C.
Zhu
,
L.
Feng
,
C.
Wang
,
H.
Cong
,
G.
Zhang
,
Z.
Yang
, and
Z.
Chen
,
Solid State Electron.
53
,
324
(
2009
).
31.
Ş.
Çavdar
,
H.
Koralay
,
N.
Tuğluoğlu
, and
A.
Günen
,
Superconductor Sci. Technol.
18
,
1204
(
2005
).
32.
M.
Matsumura
and
Y.
Hirose
,
Jpn. J. Appl. Phys.
39
,
L123
(
2000
).
33.
K.
Butcher
,
T.
Tansley
, and
D.
Alexiev
,
Solid State Electron.
39
,
333
(
1996
).
34.
C.
Champness
and
W.
Clark
,
Appl. Phys. Lett.
56
,
1104
(
1990
).
35.
T.
Phillips
and
N.
Gordon
,
J. Electron. Mater.
25
,
1151
(
1996
).
36.
V.
González-Pedro
,
X.
Xu
,
I.
Mora-Sero
, and
J.
Bisquert
,
ACS Nano
4
,
5783
(
2010
).
37.
I.
Mora-Sero
,
S.
Gimenez
,
F.
Fabregat-Santiago
,
R.
Gomez
,
Q.
Shen
,
T.
Toyoda
, and
J.
Bisquert
,
Acc. Chem. Res.
42
,
1848
(
2009
).
38.
J.
Wang
,
I.
Mora-Seró
,
Z.
Pan
,
K.
Zhao
,
H.
Zhang
,
Y.
Feng
,
G.
Yang
,
X.
Zhong
, and
J.
Bisquert
,
J. Am. Chem. Soc.
135
,
15913
(
2013
).
39.
A.
Uddin
and
C.
Teo
,
Appl. Phys. A
105
,
39
(
2011
).
40.
W. K.
Bae
,
M. K.
Nam
,
K.
Char
, and
S.
Lee
,
Chem. Mater.
20
,
5307
(
2008
).
41.
G.
Paasch
and
S.
Scheinert
,
Synth. Met.
122
,
145
(
2001
).
42.
V.
Shrotriya
and
Y.
Yang
,
J. Appl. Phys.
97
,
054504
(
2005
).
43.
S.
Berleb
,
W.
Brütting
, and
G.
Paasch
,
Org. Electron.
1
,
41
(
2000
).
44.
H.
Gommans
,
M.
Kemerink
, and
R.
Janssen
,
Phys. Rev. B
72
,
235204
(
2005
).
45.
F.
Castro
,
P.
Bueno
,
C.
Graeff
,
F.
Nüesch
,
L.
Zuppiroli
,
L.
Santos
, and
R.
Faria
,
Appl. Phys. Lett.
87
,
013505
(
2005
).

Supplementary Material

You do not currently have access to this content.