Electronic detection of far-infrared (FIR) radiation up to 9.74 THz is reported in a foundry complementary metal-oxide semiconductor (CMOS) technology. The detectors were fabricated with Schottky-barrier diodes (SBDs) formed in 130-nm CMOS without any process modifications. Direct-antenna matched detectors achieve a measured peak optical responsivity (RV) of 383 and 25 V/W at 4.92 and 9.74 THz, respectively, near the 5 and 10 THz fundamental frequency of the antennas. A significantly improved RV at 9.74 THz (25× compared to the MOSFET detectors and ∼2× compared to the SBD) ensures negligible impact on the system noise-equivalent power (NEP) due to the input-referred noise of the amplifier following the detector. This work also demonstrated that by incorporating the effects of plasma resonance, transit time, and FIR absorption behavior of SiO2, as well as the 3D electromagnetic simulations into the SBD model, good agreement between the measurements and simulations can be attained. The detector designed for a 10-THz operation achieves an optical NEP of 1.1 nW/√Hz at 9.74 THz in the shot-noise limit, which is comparable to that of commercially available pyro-detectors that are 50 000× larger.

1.
E. J.
Nichols
and
J. D.
Tear
, “
Joining the infrared and electric wave spectra
,”
J. Astrophys.
61
,
17
37
(
1925
).
2.
Leisawitz
 et al, “
Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers
,”
Proc. SPIE
4013
,
36
46
(
2000
).
3.
T. G.
Phillips
and
J.
Keene
, “
Submillimeter astronomy
,”
Proc. IEEE
80
(
11
),
1662
1678
(
1959
).
4.
P.
Siegel
, “
THz technology
,”
IEEE Trans. Microw. Theory Tech.
50
(
3
),
910
928
(
2002
).
5.
M.
Tonouchi
, “
Galore new applications of terahertz science and technology
,”
IEEE Trans. Terahertz Sci. Technol.
2
,
90
101
(
2009
).
6.
J.
Costello
,
C.
McInerney
,
C.
Bleakley
,
J.
Selfe
, and
A.
Donnelly
, “
The use of thermal imaging in assessing skin temperature following cryotherapy: A review
,”
J. Therm. Biol.
37
(
2
),
103
110
(
2012
).
7.
A.
Rogalski
,
Infrared Detectors
, 2nd ed. (
CRC Press
,
Boca Raton
,
FL
,
2011
).
8.
A.
Rogalski
,
P.
Martyniuk
, and
M.
Kopytko
, “
Challenges of small-pixel infrared detectors: A review
,”
Rep. Prog. Phys.
79
(
4
),
046501
(
2016
).
9.
E.
Seok
,
D.
Shim
,
C.
Mao
,
R.
Han
,
S.
Sankaran
,
C.
Cao
,
W.
Knap
, and
K. K.
O
, “
Progress and challenges towards terahertz CMOS integrated circuits
,”
IEEE J. Solid-State Circuits
45
(
8
),
1554
1564
(
2010
).
10.
R.
Han
,
Y.
Zhang
,
Y.
Kim
,
D.
Kim
,
S.
Hisashi
,
E.
Afshari
, and
K. K.
O
, “
Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel
,”
IEEE J. Solid-State Circuits
48
(
10
),
2296
2308
(
2013
).
11.
D.
Kim
,
S.
Park
,
R.
Han
, and
K. K.
O
, “
820-GHz imaging array using diode-connected NMOS transistors in 130-nm CMOS
,” in
Proceedings of IEEE Symposium on VLSI Circuits
,
Kyoto, Japan
,
2013
(
IEEE
,
2013
), pp.
12
13
.
12.
E.
Ojefors
,
U.
Pfeiffer
,
A.
Lisauskas
, and
H.
Roskos
, “
A 0.65 THz focal-plane array in a quarter-micron CMOS process technology
,”
IEEE J. Solid-State Circuits
44
(
7
),
1968
1976
(
2009
).
13.
R.
Hadi
,
H.
Sherry
,
J.
Grzyb
,
Y.
Zhao
,
W.
Forster
,
H.
Keller
,
A.
Cathelin
,
A.
Kaiser
, and
U.
Pfeiffer
, “
A 1k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS
,”
IEEE J. Solid-State Circuits
47
(
12
),
2999
3012
(
2012
).
14.
S.
Boppel
,
A.
Lisauskas
,
D.
Seliuta
,
L.
Minkevicius
,
L.
Kasalynas
,
G.
Valusis
,
V.
Krozer
, and
H. G.
Roskos
, “
CMOS integrated antenna-coupled field-effect-transistors for the detection of 0.2 to 4.3 THz
,”
IEEE Silicon Monolith. Integr. Circuits RF Syst.
60
(
12
),
77
80
(
2012
).
15.
S.
Boppel
,
A.
Lisauskas
,
M.
Bauer
,
M.
Mundt
,
R.
Venckevicius
,
L.
Minkevicius
,
D.
Seliuta
,
I.
Kasalynas
,
B.
Khamaisi
,
E.
Socher
,
G.
Valusis
,
V.
Krozer
, and
H.
Roskos
, “
Optimized tera-FET detector performance based on an analytical device model verified up to 9 THz
,” in
International Conference on Infrared, Millimeter and THz (IRMMW-THz)
(
IEEE
,
2013
), pp.
1
1
.
16.
A.
Lisauskas
,
M.
Bauer
,
S.
Boppel
,
M.
Mundt
,
B.
Khamaisi
,
E.
Socher
,
R.
Venckevičius
,
L.
Minkevičius
,
I.
Kašalynas
,
D.
Seliuta
,
G.
Valušis
,
V.
Krozer
, and
H. G.
Roskos
, “
Exploration of terahertz imaging with silicon MOSFETs
,”
J. Infrared Millim. THz Waves
35
(
1
),
63
80
(
2014
).
17.
H. G.
Roskos
,
A.
Lisauskas
,
S.
Boppel
,
D.
Seliuta
,
L.
Minkevičius
,
I.
Kašalynas
,
G.
Valušis
,
B.
Khamaisi
,
V.
Krozer
, and
E.
Socher
, “
THz sensing and imaging with silicon field-effect transistors up to 9 THz
,” in
Latin America Optics and Photonics Conference
(
OSA Publishing
,
2012
), p.
LM4A.1
.
18.
Z.
Ahmad
,
A.
Lisauskas
,
H.
Roskos
, and
K. K.
O
, “
9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2014
), pp.
4.4.1
4.4.4
.
19.
D.
Kim
,
Ph.D. dissertation
,
The University of Texas at Dallas
,
2016
.
20.
M.
Cowley
and
H. O.
Sorensen
, “
Quantitative comparison of solid-state microwave detectors
,”
IEEE Trans. Microw. Theory Tech.
14
(
12
),
588
602
(
1966
).
21.
A.
van der Ziel
, “
Noise in solid-state devices and lasers
,”
Proc. IEEE
58
(
8
),
1178
1206
(
1970
).
22.
S.
Sankaran
and
K. K.
O
, “
Schottky barrier diodes for millimeter wave detection in a foundry CMOS process
,”
IEEE Electron Device Lett.
26
(
7
),
492
494
(
2005
).
23.
S.
Sankaran
,
C.
Mao
,
E.
Seok
,
D.
Shim
,
C.
Cao
,
R.
Han
,
C.
Hung
, and
K. K.
O
, “
Towards terahertz operation of CMOS
,” in
IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers
,
San Francisco, CA (
IEEE
,
2009
), pp.
202
203
.
24.
See http://www.ansys.com/ for more information about high frequency structure simulator (HFSS) user guide, ANSYS Inc.
25.
C.
Mao
,
Ph.D. dissertation
,
University of Florida
,
2009
.
26.
J.
Louhi
and
A.
Raisanen
, “
On the modeling and optimization of Schottky varactor frequency multipliers at submillimeter wavelengths
,”
IEEE Trans. Microwave Theory Tech.
43
(
4
),
922
926
(
1995
).
27.
See http://www.keysight.com/ for more information about advanced design system (ads) user guide, Keysight Inc.
28.
K.
Champlin
,
D.
Armstrong
, and
P.
Gunderson
, “
Charge carrier inertia in semiconductors
,”
Proc. IEEE
52
(
6
),
677
685
(
1964
).
29.
K.
Champlin
and
G.
Eisenstein
, “
Cutoff frequency of submillimeter Schottky-barrier diodes
,”
IEEE Trans. Microwave Theory Tech.
26
(
1
),
31
34
(
1978
).
30.
M.
Kelly
and
T.
Wrixon
, “
Conversion losses in Schottky-barrier diode mixers in the submillimeter region
,”
IEEE Trans. Microwave Theory Tech.
27
(
7
),
665
672
(
1979
).
31.
T. W.
Crowe
, “
GaAs Schottky barrier mixer diodes for the frequency range 1-10 THz
,”
Intl. J. Infrared Millim. Waves
10
(
7
),
765
777
(
1989
).
32.
A.
van der Ziel
, “
Infrared detection and mixing in heavily doped Schottky-barrier diodes
,”
J. Appl. Phys.
47
(
5
),
2059
2068
(
1976
).
33.
R.
Han
,
Y.
Zhang
,
D.
Coquillat
,
H.
Videlier
,
W.
Knap
,
E.
Brown
, and
K. K.
O
, “
A 280-GHz Schottky diode detector in 130-nm digital CMOS
,”
IEEE J. Solid-State Circuits
46
(
11
),
2602
2612
(
2011
).
34.
C. A.
Balanis
,
Antenna Theory
(
John Wiley & Sons
,
Hoboken
,
NJ
,
2005
).
35.
S.
Basu
,
Crystalline Silicon—Properties and Uses
(
InTech
,
Rijeka
,
2011
).
36.
R.
Ashokan
,
V.
Gopal
, and
K. C.
Chhabra
, “
IR absorption spectra of SiO2 films grown by photo-CVD
,”
Phys. Status Solidi A
121
(
2
),
533
537
(
1990
).
37.
N.
Oda
,
A.
Lee
,
T.
Ishi
,
I.
Hosako
, and
Q.
Hu
, “
Proposal for real-time terahertz imaging system with palm-size terahertz camera and compact quantum cascade laser
,”
Proc. SPIE
8363
,
83630A
(
2012
).
38.
V.
Dobrovolsky
,
F.
Sizov
,
V.
Zabudsky
, and
N.
Momot
, “
Mm/sub-mm bolometer based on electron heating in narrow-gap semiconductor
,”
Terahertz Sci. Technol.
3
(
1
),
33
54
(
2010
).
39.
I.
Kasalynas
,
A.
Adam
,
T.
Klaassen
,
J.
Hovenier
,
G.
Pandraud
,
V.
Iordanov
, and
P.
Sarro
, “
Design and performance of a room-temperature terahertz detection array for real-time imaging
,”
IEEE J. Selected Topics Quant. Elect.
14
(
2
),
363
369
(
2008
).
40.
N.
Neumann
, “Comparison of pyroelectric and thermopile detectors,” in
AMA Conference
(AMA Service,
2013
), pp.
139
143
.
41.
See http://www.excelitas.com/ for more information about Pyroelectric detector datasheet for model LHi1128, Excilitas Technologies.
42.
See http://www.mtinstruments.com/ for more information about THz golay cell detector datasheet for model SN190744. Microtech Instruments Inc.
43.
E.
Dacquay
,
A.
Tomkins
,
K.
Yau
,
E.
Laskin
,
P.
Chevalier
,
A.
Chantre
,
B.
Sautreuil
, and
S.
Voinigescu
, “
D-band total power radiometer performance optimization in an SiGe HBT technology
,”
IEEE Trans. Microw. Theory Tech.
60
(
3
),
813
826
(
2012
).
44.
E.
Brown
,
H.
Kazemi
,
A.
Young
,
J.
Zimmerman
,
T.
Wilkinson
,
J.
Bjarnason
,
J.
Hacker
, and
A.
Gossard
, “
High-sensitivity, quasi-optically-coupled semimetal-semiconductor detectors at 104 GHz
,”
Proc. SPIE
6212
,
62120S
(
2006
).
45.
J. L.
Hesler
and
T. W.
Crowe
, “
Responsivity and noise measurements of zero-bias Schottky diode detectors
,” in
18th International Symposium on Space Terahertz Technology
(National Radio Astronomy Observatory (NRAO),
2007
), pp.
89
92
.
46.
See https://www.vadiodes.com/ for more information about Schottky diode detectors, Virginia Diodes Inc.
You do not currently have access to this content.