Electronic detection of far-infrared (FIR) radiation up to 9.74 THz is reported in a foundry complementary metal-oxide semiconductor (CMOS) technology. The detectors were fabricated with Schottky-barrier diodes (SBDs) formed in 130-nm CMOS without any process modifications. Direct-antenna matched detectors achieve a measured peak optical responsivity (RV) of 383 and 25 V/W at 4.92 and 9.74 THz, respectively, near the 5 and 10 THz fundamental frequency of the antennas. A significantly improved RV at 9.74 THz (25× compared to the MOSFET detectors and ∼2× compared to the SBD) ensures negligible impact on the system noise-equivalent power (NEP) due to the input-referred noise of the amplifier following the detector. This work also demonstrated that by incorporating the effects of plasma resonance, transit time, and FIR absorption behavior of SiO2, as well as the 3D electromagnetic simulations into the SBD model, good agreement between the measurements and simulations can be attained. The detector designed for a 10-THz operation achieves an optical NEP of 1.1 nW/√Hz at 9.74 THz in the shot-noise limit, which is comparable to that of commercially available pyro-detectors that are 50 000× larger.
Skip Nav Destination
Article navigation
21 May 2019
Research Article|
May 16 2019
Design and demonstration of antenna-coupled Schottky diodes in a foundry complementary metal-oxide semiconductor technology for electronic detection of far-infrared radiation
Special Collection:
Advances in Terahertz Solid-State Physics and Devices
Z. Ahmad
;
1
Texas Instruments
, Dallas, Texas 75243, USA
a)Author to whom correspondence should be addressed: xeeesh@umich.edu
Search for other works by this author on:
A. Lisauskas
;
A. Lisauskas
2
Institute of Applied Electrodynamics and Telecommunications, Vilnius University
, LT-10257 Vilnius, Lithuania
Search for other works by this author on:
H. G. Roskos
;
H. G. Roskos
3
Department of Physics, Goethe University
, D-60438 Frankfurt, Germany
Search for other works by this author on:
K. K. O
K. K. O
4
TxACE and Department of Electrical Engineering, University of Texas at Dallas
, Richardson, Texas 75080, USA
Search for other works by this author on:
a)Author to whom correspondence should be addressed: xeeesh@umich.edu
b)
This research was performed while Z. Ahmad was at The University of Texas at Dallas, Richardson, Texas 75080, USA.
Note: This paper is part of the Special Topic section published in “Advances in terahertz solid-state physics and devices,” J. Appl. Phys. 125(15) (2019).
J. Appl. Phys. 125, 194501 (2019)
Article history
Received:
November 30 2018
Accepted:
April 24 2019
Citation
Z. Ahmad, A. Lisauskas, H. G. Roskos, K. K. O; Design and demonstration of antenna-coupled Schottky diodes in a foundry complementary metal-oxide semiconductor technology for electronic detection of far-infrared radiation. J. Appl. Phys. 21 May 2019; 125 (19): 194501. https://doi.org/10.1063/1.5083689
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00