The characterization of photoluminescence (PL) decay is a very basic optical measurement. In this article, we propose a straightforward yet effective procedure to analyze PL decays measured at multiple wavelengths at once, using a time-gated CCD or a streak camera. In our procedure, we make sure to include the onset edge of the PL decay, because its omission can significantly reduce the quality of the analysis and propose a way to accurately determine this parameter.

1.
K.
Kůsová
and
K.
Dohnalová
, “Organically capped silicon nanocrystals,” in Silicon Nanomaterials Sourcebook: Low-Dimensional Structures, Quantum Dots, and Nanowires, Volume One, edited by K. D. Sattler (Taylor & Francis, CRC Press, Boca Raton, FL, 2017), pp. 367–397.
2.
K. Y.
Zhang
,
Q.
Yu
,
H.
Wei
,
S.
Liu
,
Q.
Zhao
, and
W.
Huang
, “
Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing
,”
Chem. Rev.
118
,
1770
1839
(
2018
).
3.
W. E.
Moerner
and
M.
Orrit
, “
Illuminating single molecules in condensed matter
,”
Science
283
,
1670
1676
(
1999
).
4.
I.
Sychugov
,
J.
Valenta
, and
J.
Linnros
, “
Probing silicon quantum dots by single-dot techniques
,”
Nanotechnology
28
,
072002
(
2017
).
5.
F.
Sangghaleh
,
B.
Bruhn
,
T.
Schmidt
, and
J.
Linnros
, “
Exciton lifetime measurements on single silicon quantum dots
,”
Nanotechnology
24
,
225204
(
2013
).
6.
V. K.
Khanna
, “
Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications
,”
Prog. Quantum Electron.
29
,
59
163
(
2005
).
7.
I.
Pelant
and
J.
Valenta
,
Luminescence Spectroscopy of Semiconductors
(
Oxford University Press
,
Oxford
,
2012
).
8.
M.
Maiberg
and
R.
Scheer
, “
Theoretical study of time-resolved luminescence in semiconductors. I. Decay from the steady state
,”
J. Appl. Phys.
116
,
123710
(
2014
).
9.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
, 2nd ed. (
Kluwer Academic/Plenum Publishers
,
New York
,
1999
).
10.
H.
Lemmetyinen
,
N. V.
Tkachenko
,
B.
Valeur
,
J.-i.
Hotta
,
M.
Ameloot
,
N. P.
Ernsting
,
T.
Gustavsson
, and
N.
Boens
, “
Time-resolved fluorescence methods (IUPAC Technical Report)
,”
Pure Appl. Chem.
86
,
1969
1998
(
2014
).
11.
See https://www.hamamatsu.com/resources/pdf/sys/SHSS0006E_STREAK.pdf for “Guide to streak cameras” by the manufacturer of streak camera Hamamatsu; accessed March 2019.
12.
N.
Boens
and
M.
Van der Auweraer
, “
Identifiability of models for time-resolved fluorescence with underlying distributions of rate constants
,”
Photochem. Photobiol. Sci.
13
,
422
430
(
2014
).
13.
M.
Greben
,
P.
Khoroshyy
,
I.
Sychugov
, and
J.
Valenta
, “
Non-exponential decay kinetics: Correct assessment and description illustrated by slow luminescence of Si nanostructures
,”
Appl. Spectrosc. Rev.
0
,
1
44
(
2019
).
14.
M.
Berberan-Santos
,
E.
Bodunov
, and
B.
Valeur
, “
Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential)
,”
Chem. Phys.
315
,
171
182
(
2005
).
15.
M.
Komura
and
S.
Itoh
, “
Fluorescence measurement by a streak camera in a single-photon-counting mode
,”
Photosynth. Res.
101
,
119
133
(
2009
).
16.
S. L.
Brown
,
R.
Krishnan
,
A.
Elbaradei
,
J.
Sivaguru
,
M. P.
Sibi
, and
E. K.
Hobbie
, “
Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals
,”
AIP Adv.
7
,
055314
(
2017
).
17.
E. N.
Bodunov
and
A. L.
Simões Gamboa
, “
Kinetics of photoluminescence decay of colloidal quantum dots: Nonexponential behavior and detrapping of charge carriers
,”
J. Phys. Chem. C
122
,
10637
10642
(
2018
).
18.
G. M.
Carroll
,
R.
Limpens
, and
N. R.
Neale
, “
Tuning confinement in colloidal silicon nanocrystals with saturated surface ligands
,”
Nano Lett.
18
,
3118
3124
(
2018
).
19.
J. R.
Knutson
,
J. M.
Beechem
, and
L.
Brand
, “
Simultaneous analysis of multiple fluorescence decay curves: A global approach
,”
Chem. Phys. Lett.
102
,
501
507
(
1983
).
20.
J.
Leonard
,
N.
Dumas
,
J.-P.
Causse
,
S.
Maillot
,
N.
Giannakopoulou
,
S.
Barre
, and
W.
Uhring
, “
High-throughput time-correlated single photon counting
,”
Lab Chip
14
,
4338
4343
(
2014
).
21.
K.
Dohnalová
,
L.
Ondič
,
K.
Kůsová
,
I.
Pelant
,
J. L.
Rehspringer
, and
R.-R.
Mafouana
, “
White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size
,”
J. Appl. Phys.
107
,
053102
(
2010
).
22.
P.-H.
Chung
,
C.
Tregidgo
, and
K.
Suhling
, “
Determining a fluorophore’s transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index
,”
Methods Appl. Fluoresc.
4
,
045001
(
2016
).
23.
R. W. K.
Leung
,
S.-C. A.
Yeh
, and
Q.
Fang
, “
Effects of incomplete decay in fluorescence lifetime estimation
,”
Biomed. Opt. Express
2
,
2517
2531
(
2011
).
24.
N.
Boens
,
W.
Qin
,
N.
Basarić
,
J.
Hofkens
,
M.
Ameloot
,
J.
Pouget
,
J.-P.
Lefèvre
,
B.
Valeur
,
E.
Gratton
,
M.
vandeVen
,
N. D.
Silva
,
Y.
Engelborghs
,
K.
Willaert
,
A.
Sillen
,
G.
Rumbles
,
D.
Phillips
,
A. J. W. G.
Visser
,
A.
van Hoek
,
J. R.
Lakowicz
,
H.
Malak
,
I.
Gryczynski
,
A. G.
Szabo
,
D. T.
Krajcarski
,
N.
Tamai
, and
A.
Miura
, “
Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy
,”
Anal. Chem.
79
,
2137
2149
(
2007
).
You do not currently have access to this content.