The characterization of photoluminescence (PL) decay is a very basic optical measurement. In this article, we propose a straightforward yet effective procedure to analyze PL decays measured at multiple wavelengths at once, using a time-gated CCD or a streak camera. In our procedure, we make sure to include the onset edge of the PL decay, because its omission can significantly reduce the quality of the analysis and propose a way to accurately determine this parameter.
REFERENCES
1.
K.
Kůsová
and K.
Dohnalová
, “Organically capped silicon nanocrystals,” in Silicon Nanomaterials Sourcebook: Low-Dimensional Structures, Quantum Dots, and Nanowires, Volume One, edited by K. D. Sattler (Taylor & Francis, CRC Press, Boca Raton, FL, 2017), pp. 367–397.2.
K. Y.
Zhang
, Q.
Yu
, H.
Wei
, S.
Liu
, Q.
Zhao
, and W.
Huang
, “Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing
,” Chem. Rev.
118
, 1770
–1839
(2018
). 3.
W. E.
Moerner
and M.
Orrit
, “Illuminating single molecules in condensed matter
,” Science
283
, 1670
–1676
(1999
). 4.
I.
Sychugov
, J.
Valenta
, and J.
Linnros
, “Probing silicon quantum dots by single-dot techniques
,” Nanotechnology
28
, 072002
(2017
). 5.
F.
Sangghaleh
, B.
Bruhn
, T.
Schmidt
, and J.
Linnros
, “Exciton lifetime measurements on single silicon quantum dots
,” Nanotechnology
24
, 225204
(2013
). 6.
V. K.
Khanna
, “Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications
,” Prog. Quantum Electron.
29
, 59
–163
(2005
). 7.
I.
Pelant
and J.
Valenta
, Luminescence Spectroscopy of Semiconductors
(Oxford University Press
, Oxford
, 2012
).8.
M.
Maiberg
and R.
Scheer
, “Theoretical study of time-resolved luminescence in semiconductors. I. Decay from the steady state
,” J. Appl. Phys.
116
, 123710
(2014
). 9.
J. R.
Lakowicz
, Principles of Fluorescence Spectroscopy
, 2nd ed. (Kluwer Academic/Plenum Publishers
, New York
, 1999
).10.
H.
Lemmetyinen
, N. V.
Tkachenko
, B.
Valeur
, J.-i.
Hotta
, M.
Ameloot
, N. P.
Ernsting
, T.
Gustavsson
, and N.
Boens
, “Time-resolved fluorescence methods (IUPAC Technical Report)
,” Pure Appl. Chem.
86
, 1969
–1998
(2014
). 11.
See https://www.hamamatsu.com/resources/pdf/sys/SHSS0006E_STREAK.pdf for “Guide to streak cameras” by the manufacturer of streak camera Hamamatsu; accessed March 2019.
12.
N.
Boens
and M.
Van der Auweraer
, “Identifiability of models for time-resolved fluorescence with underlying distributions of rate constants
,” Photochem. Photobiol. Sci.
13
, 422
–430
(2014
). 13.
M.
Greben
, P.
Khoroshyy
, I.
Sychugov
, and J.
Valenta
, “Non-exponential decay kinetics: Correct assessment and description illustrated by slow luminescence of Si nanostructures
,” Appl. Spectrosc. Rev.
0
, 1
–44
(2019
). 14.
M.
Berberan-Santos
, E.
Bodunov
, and B.
Valeur
, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential)
,” Chem. Phys.
315
, 171
–182
(2005
). 15.
M.
Komura
and S.
Itoh
, “Fluorescence measurement by a streak camera in a single-photon-counting mode
,” Photosynth. Res.
101
, 119
–133
(2009
). 16.
S. L.
Brown
, R.
Krishnan
, A.
Elbaradei
, J.
Sivaguru
, M. P.
Sibi
, and E. K.
Hobbie
, “Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals
,” AIP Adv.
7
, 055314
(2017
). 17.
E. N.
Bodunov
and A. L.
Simões Gamboa
, “Kinetics of photoluminescence decay of colloidal quantum dots: Nonexponential behavior and detrapping of charge carriers
,” J. Phys. Chem. C
122
, 10637
–10642
(2018
). 18.
G. M.
Carroll
, R.
Limpens
, and N. R.
Neale
, “Tuning confinement in colloidal silicon nanocrystals with saturated surface ligands
,” Nano Lett.
18
, 3118
–3124
(2018
). 19.
J. R.
Knutson
, J. M.
Beechem
, and L.
Brand
, “Simultaneous analysis of multiple fluorescence decay curves: A global approach
,” Chem. Phys. Lett.
102
, 501
–507
(1983
). 20.
J.
Leonard
, N.
Dumas
, J.-P.
Causse
, S.
Maillot
, N.
Giannakopoulou
, S.
Barre
, and W.
Uhring
, “High-throughput time-correlated single photon counting
,” Lab Chip
14
, 4338
–4343
(2014
). 21.
K.
Dohnalová
, L.
Ondič
, K.
Kůsová
, I.
Pelant
, J. L.
Rehspringer
, and R.-R.
Mafouana
, “White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size
,” J. Appl. Phys.
107
, 053102
(2010
). 22.
P.-H.
Chung
, C.
Tregidgo
, and K.
Suhling
, “Determining a fluorophore’s transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index
,” Methods Appl. Fluoresc.
4
, 045001
(2016
). 23.
R. W. K.
Leung
, S.-C. A.
Yeh
, and Q.
Fang
, “Effects of incomplete decay in fluorescence lifetime estimation
,” Biomed. Opt. Express
2
, 2517
–2531
(2011
). 24.
N.
Boens
, W.
Qin
, N.
Basarić
, J.
Hofkens
, M.
Ameloot
, J.
Pouget
, J.-P.
Lefèvre
, B.
Valeur
, E.
Gratton
, M.
vandeVen
, N. D.
Silva
, Y.
Engelborghs
, K.
Willaert
, A.
Sillen
, G.
Rumbles
, D.
Phillips
, A. J. W. G.
Visser
, A.
van Hoek
, J. R.
Lakowicz
, H.
Malak
, I.
Gryczynski
, A. G.
Szabo
, D. T.
Krajcarski
, N.
Tamai
, and A.
Miura
, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy
,” Anal. Chem.
79
, 2137
–2149
(2007
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.