The surface diffusion potential landscape plays an essential role in a number of physical and chemical processes such as self-assembly and catalysis. Diffusion energy barriers can be calculated theoretically for simple systems, but there is currently no experimental technique to systematically measure them on the relevant atomic length scale. Here, we introduce an atomic force microscopy based method to semiquantitatively map the surface diffusion potential on an atomic length scale. In this proof of concept experiment, we show that the atomic force microscope damping signal at constant frequency-shift can be linked to nonconservative processes associated with the lowering of energy barriers and compared with calculated single-atom diffusion energy barriers.

1.
H.
Over
,
Y. D.
Kim
,
A.
Seitsonen
,
S.
Wendt
,
E.
Lundgren
,
M.
Schmid
,
P.
Varga
,
A.
Morgante
, and
G.
Ertl
, “
Atomic-scale structure and catalytic reactivity of the RuO2 (110) surface
,”
Science
287
,
1474
1476
(
2000
).
2.
G. A.
Somorjai
,
K. M.
Bratlie
,
M. O.
Montano
, and
J. Y.
Park
, “
Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons
,”
J. Phys. Chem. B
110
,
20014
20022
(
2006
).
3.
T.
Chen
and
V. O.
Rodionov
, “
Controllable catalysis with nanoparticles: Bimetallic alloy systems and surface adsorbates
,”
ACS Catal.
6
,
4025
4033
(
2016
).
4.
J.
Jones
,
H.
Xiong
,
A. T.
DeLaRiva
,
E. J.
Peterson
,
H.
Pham
,
S. R.
Challa
,
G.
Qi
,
S.
Oh
,
M. H.
Wiebenga
,
X. I.
Pereira Hernández
,
Y.
Wang
, and
A. K.
Datye
, “
Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
,”
Science
353
,
150
154
(
2016
).
5.
F.
Dvořák
,
M. F.
Camellone
,
A.
Tovt
,
N.-D.
Tran
,
F. R.
Negreiros
,
M.
Vorokhta
,
T.
Skála
,
I.
Matolínová
,
J.
Mysliveček
,
V.
Matolín
, and
S.
Fabris
, “
Creating single-atom Pt-ceria catalysts by surface step decoration
,”
Nat. Commun.
7
,
10801
(
2016
).
6.
J. V.
Barth
,
G.
Costantini
, and
K.
Kern
, “
Engineering atomic and molecular nanostructures at surfaces
,”
Nature
437
,
671
(
2005
).
7.
C.
Zhu
,
S.
Fu
,
Q.
Shi
,
D.
Du
, and
Y.
Lin
, “
Single-atom electrocatalysts
,”
Angew. Chem. Int. Ed.
56
,
13944
(
2017
).
8.
J.
Liu
, “
Catalysis by supported single metal atoms
,”
ACS Catal.
7
,
34
59
(
2016
).
9.
Y.
Chen
,
Z.
Huang
,
Z.
Ma
,
J.
Chen
, and
X.
Tang
, “
Fabrication, characterization, and stability of supported single-atom catalysts
,”
Catal. Sci. Technol.
7
,
4250
4258
(
2017
).
10.
H.
Roder
,
E.
Hahn
,
H.
Brune
,
J.-P.
Bucher
, and
K.
Kern
, “
Building one-dimensional and 2-dimensional nanostructures by diffusion-controlled aggregation at surfaces
,”
Nature
366
,
141
143
(
1993
).
11.
Y.
Sugimoto
,
M.
Abe
,
S.
Hirayama
,
N.
Oyabu
,
O.
Custance
, and
S.
Morita
, “
Atom inlays performed at room temperature using atomic force microscopy
,”
Nat. Mater.
4
,
156
159
(
2005
).
12.
G.
Ehrlich
and
F.
Hudda
, “
Atomic view of surface self-diffusion: Tungsten on tungsten
,”
J. Chem. Phys.
44
,
1039
1049
(
1966
).
13.
G.
Ehrlich
, “
Quantitative examination of individual atomic events on solids
,”
J. Vac. Sci. Technol.
17
,
9
14
(
1980
).
14.
R.
Gomer
, “
Diffusion of adsorbates on metal surfaces
,”
Rep. Prog. Phys.
53
,
917
(
1990
).
15.
P.
Gravil
,
M.
Devel
,
P.
Lambin
,
X.
Bouju
,
C.
Girard
, and
A.
Lucas
, “
Adsorption of C60 molecules
,”
Phys. Rev. B
53
,
1622
(
1996
).
16.
J. V.
Barth
, “
Transport of adsorbates at metal surfaces: From thermal migration to hot precursors
,”
Surf. Sci. Rep.
40
,
75
149
(
2000
).
17.
M.
Ternes
,
C. P.
Lutz
,
C. F.
Hirjibehedin
,
F. J.
Giessibl
, and
A. J.
Heinrich
, “
The force needed to move an atom on a surface
,”
Science
319
,
1066
1069
(
2008
).
18.
H.
Hedgeland
,
M.
Sacchi
,
P.
Singh
,
A. J.
McIntosh
,
A. P.
Jardine
,
G.
Alexandrowicz
,
D. J.
Ward
,
S. J.
Jenkins
,
W.
Allison
, and
J.
Ellis
, “
Mass transport in surface diffusion of van der Waals bonded systems: Boosted by rotations?
J. Phys. Chem. Lett.
7
,
4819
4824
(
2016
).
19.
J.
Repp
,
G.
Meyer
,
F. E.
Olsson
, and
M.
Persson
, “
Controlling the charge state of individual gold adatoms
,”
Science
305
,
493
495
(
2004
).
20.
T.
Sonnleitner
,
I.
Swart
,
N.
Pavliček
,
A.
Pöllmann
, and
J.
Repp
, “
Molecular symmetry governs surface diffusion
,”
Phys. Rev. Lett.
107
,
186103
(
2011
).
21.
J.
Repp
,
W.
Steurer
,
I.
Scivetti
,
M.
Persson
,
L.
Gross
, and
G.
Meyer
, “
Charge-state-dependent diffusion of individual gold adatoms on ionic thin NaCl films
,”
Phys. Rev. Lett.
117
,
146102
(
2016
).
22.
E.
Suliga
and
M.
Henzler
, “
Diffusion of Ag on clean Ge(111) with different step densities
,”
J. Phys. C Solid State Phys.
16
,
1543
(
1983
).
23.
X.
Song
,
Z.
Wang
,
X.
Liu
,
M.
Dong
, and
L.
Wang
, “
Controlling the intracell diffusion behaviour of Ag monomers on Si(111)-(7×7) by voltage pulse manipulation
,”
Appl. Phys. Lett.
109
,
103105
(
2016
).
24.
B.
Swartzentruber
, “
Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy
,”
Phys. Rev. Lett.
76
,
459
(
1996
).
25.
M.
Bott
,
M.
Hohage
,
M.
Morgenstern
,
T.
Michely
, and
G.
Comsa
, “
New approach for determination of diffusion parameters of adatoms
,”
Phys. Rev. Lett.
76
,
1304
(
1996
).
26.
F.
Loske
,
J.
Lübbe
,
J.
Schütte
,
M.
Reichling
, and
A.
Kühnle
, “
Quantitative description of C60 diffusion on an insulating surface
,”
Phys. Rev. B
82
,
155428
(
2010
).
27.
Y.
Shi-Chao
,
X.
Nan
,
G.
Hui-Qi
,
S.
Qian
,
G.
Yang
,
S.
Xin-Yan
, and
L.
Xing-Hua
, “
Mapping the diffusion potential of a reconstructed Au (111) surface at nanometer scale with 2d molecular gas
,”
Chin. Phys. Lett.
29
,
046803
(
2012
).
28.
J.
Hong
,
Y.
Pan
,
Z.
Hu
,
D.
Lv
,
C.
Jin
,
W.
Ji
,
J.
Yuan
, and
Z.
Zhang
, “
Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide
,”
Nano Lett.
17
,
3383
3390
(
2017
).
29.
O.
Custance
,
R.
Perez
, and
S.
Morita
, “
Atomic force microscopy as a tool for atom manipulation
,”
Nat. Nanotechnol.
4
,
803
810
(
2009
).
30.
S. W.
Hla
, “
Atom-by-atom assembly
,”
Rep. Prog. Phys.
77
,
056502
(
2014
).
31.
H. N.
Pishkenari
, “
Atomic interactions between metallic tips and surfaces in NC-AFM
,”
J. Phys. D Appl. Phys.
48
,
125301
(
2015
).
32.
S.
Freund
,
A.
Hinaut
,
R.
Pawlak
,
S.-X.
Liu
,
S.
Decurtins
,
E.
Meyer
, and
T.
Glatzel
, “
Morphology change of C60 islands on organic crystals observed by atomic force microscopy
,”
ACS Nano
10
,
5782
5788
(
2016
).
33.
T.
Arai
,
R.
Inamura
,
D.
Kura
, and
M.
Tomitori
, “
Energy dissipation unveils atomic displacement in the noncontact atomic force microscopy imaging of Si (111)-(7×7)
,”
Phys. Rev. B
97
,
115428
(
2018
).
34.
U.
Kürpick
and
T. S.
Rahman
, “
Tip induced motion of adatoms on metal surfaces
,”
Phys. Rev. Lett.
83
,
2765
2768
(
1999
).
35.
Y.
Sugimoto
,
P.
Pou
,
O.
Custance
,
P.
Jelínek
,
M.
Abe
,
R.
Peréz
, and
S.
Morita
, “
Complex patterning by vertical interchange atom manipulation using atomic force microscopy
,”
Science
322
,
413
417
(
2008
).
36.
Y.
Sugimoto
,
A.
Yurtsever
,
M.
Abe
,
S.
Morita
,
M.
Ondrácek
,
P.
Pou
,
R.
Pérez
, and
P.
Jelínek
, “
Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy
,”
ACS Nano
7
,
7370
7376
(
2013
).
37.
Y.
Sugimoto
,
A.
Yurtsever
,
N.
Hirayama
,
M.
Abe
, and
S.
Morita
, “
Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy
,”
Nat. Commun.
5
,
4360
(
2014
).
38.
A.
Yurtsever
,
M.
Abe
,
S.
Morita
, and
Y.
Sugimoto
, “
Role of lateral forces on atom manipulation process on Si(111)-(7×7) surface in dynamic force microscopy
,”
Phys. Rev. B
96
,
155412
(
2017
).
39.
B.
Enkhtaivan
and
A.
Oshiyama
, “
Atomic force microscope manipulation of Ag atom on the Si(111) surface
,”
Phys. Rev. B
95
,
035309
(
2017
).
40.
R.
Perez
,
I.
Štich
,
M. C.
Payne
, and
K.
Terakura
, “
Chemical interactions in noncontact AFM on semiconductor surfaces: Si(111), Si(100) and GaAs(110)
,”
Appl. Surf. Sci.
140
,
320
326
(
1999
).
41.
L.
Kantorovich
and
C.
Hobbs
, “
Probing the Si(001) surface with a Si tip: An ab initio study
,”
Phys. Rev. B
73
,
245420
(
2006
).
42.
A.
Sweetman
,
S.
Jarvis
,
R.
Danza
,
J.
Bamidele
,
L.
Kantorovich
, and
P.
Moriarty
,
Phys. Rev. B
84
,
1
10
(
2011
).
43.
J.
Bamidele
,
Y. J.
Li
,
S.
Jarvis
,
Y.
Naitoh
,
Y.
Sugawara
, and
L.
Kantorovich
, “
Complex design of dissipation signals in non-contact atomic force microscopy
,”
Phys. Chem. Chem. Phys.
14
,
16250
16257
(
2012
).
44.
T.
Trevethan
,
L.
Kantorovich
,
J.
Polesel-Maris
,
S.
Gauthier
, and
A.
Shluger
, “
Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip
,”
Phys. Rev. B
76
,
085414
(
2007
).
45.
R.
Villarreal
,
M.
Longobardi
,
S. A.
Koester
,
C. J.
Kirkham
,
D.
Bowler
, and
C.
Renner
, “
Structure of self-assembled Mn atom chains on Si(001)
,”
Phys. Rev. Lett.
115
,
256104
(
2015
).
46.
C.
Nolph
,
K.
Simov
,
H.
Liu
, and
P.
Reinke
, “
Manganese nanostructures on Si (100)(2×1) surfaces: Temperature-driven transition from wires to silicides
,”
J. Phys. Chem. C
114
,
19727
19733
(
2010
).
47.
X.-Y.
Ren
,
H.-J.
Kim
,
C.-Y.
Niu
,
Y.
Jia
, and
J.-H.
Cho
, “
Origin of symmetric dimer images of Si(001) observed by low-temperature scanning tunneling microscopy
,”
Sci. Rep.
6
,
27868
(
2016
).
48.
J.-T.
Wang
,
C.
Chen
,
E.
Wang
, and
Y.
Kawazoe
, “
Magic monatomic linear chains for Mn nanowire self-assembly on Si(001)
,”
Phys. Rev. Lett.
105
,
116102
(
2010
).
49.
A. M. P.
Sena
and
D. R.
Bowler
, “
A density functional theory study of Mn nanowires on the Si(001) surface
,”
J. Phys. Condens. Matter
23
,
305003
(
2011
).
50.
M.
Hortamani
,
H.
Wu
,
P.
Kratzer
, and
M.
Scheffler
, “
Epitaxy of Mn on Si(001): Adsorption, surface diffusion, and magnetic properties studied by density-functional theory
,”
Phys. Rev. B
74
,
205305
(
2006
).
You do not currently have access to this content.